• Title/Summary/Keyword: slag concrete

Search Result 1,356, Processing Time 0.045 seconds

Physical Properties of Permeable Concrete Using Slag as an Aggregate (슬래그 골재를 사용한 투수성 콘크리트의 물리적 성질)

  • 최재진;박원태
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.404-408
    • /
    • 2003
  • This paper discusses the physical properties of permeable high quality concrete using blast furnace slag or steel slag as a part of aggregate. In the case of steel slag, aging treatment was adopted to prevent the volume expansion. With high range water reducing agent, the concrete using slag aggregate showed compressive strength up to 24MPa at the age of 28 days and the water permeability of the concrete was over the level of 0.1 m/s in this experiment. Also, there was no expansion problem in the concrete substituted with aged slag as a part of aggregate.

  • PDF

An Experimental Study on the Frost Resistance of High-Flowing Concrete Using Granulated Blast-Furnace Slag (고로슬래그 미분말을 사용한 고유동콘크리트의 내동해성에 관한 실험적 연구)

  • 김무한;권영진;강석표
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.43-51
    • /
    • 2000
  • This study is to investigate for the frost resistance of high-flowing concrete using finely ground granulated blast-furnace slag with experimental parameters, such as type of binder, type of superplasticizer and method of curing. The resistance to freezing and thawing of high-flowing concrete by type of binder and superplasticizer is presented differently. Though the frost resistance of high-flowing concrete is satisfactory under standard condition, it is required that high-flowing concrete has entrained air like plain concrete. Because the critical spacing factor, being capacity of frost resistance, of high-flowing concrete is longer that of plain concrete, the frost resistance of high-flowing concrete, using finely ground granulated furnace blast slag, is superior to that of plain concrete.

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Time&Period of Frost Damage (동해시점 및 지속시간에 따른 고로슬래그콘크리트의 강도발현 특성에 관한 실험적 연구)

  • 반성수;이민호;최성우;유득현;최봉주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.143-148
    • /
    • 2002
  • Recently, to consider economical and constructive aspect, Usage of Admixture, like Blast-Furnace Slag and Fly-Ash, are increased. Blast-Furnace Slag, a by-product of steel industry, have many advantage, to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to time and period of frost damage for early age curing. According to this study, if early age curing is carried out before having frost damage, the strength of concrete, subjected to frost damage, is recovered. And that properties is not connected with the frost cause.

  • PDF

A Study of Properties of Drying Shrinkage and Creep of Concrete Incorporating Hwangtoh and Blast Furnace Slag (황토와 고로슬래그를 첨가한 콘크리트의 건조수축 및 크리프 특성에 관한 연구)

  • Kang, Hong-Ki;Yang, Keun-Hyeok;Lee, Young-Ho;Hwang, Hey-Zoo;Chung, Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.612-615
    • /
    • 2004
  • The objective of this experimental study was to understand inelastic strain of concrete incorporating hwangtoh or combination of hwangtoh and slag. Main variables were replacement level of admixtures, hwangtoh and slag. We studied the properties of concrete such as heat of hydration, drying shrinkage and creep according to the replacement level of hwangtoh and slag. Test results showed that the heat of hydration of concrete decrease with increasing hwangtoh and slag replacement. Also drying shrinkage and creep of concrete increase with increasing hwangtoh replacement.

  • PDF

Application for Lean Concrete Using Basic Oxygen Furnace-Slag (제강 풍쇄 슬래그 잔골재를 활용한 빈배합콘크리트 적용성 연구)

  • Kim Jin-Cheol;Shim Jae-Won;Jo Kyu-Seong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.177-180
    • /
    • 2004
  • In these days the exhaustion of natural sand has been highlighted with the environmental damages due to excavating sea-sand. Many researchers and engineers have investigated some materials to replace natural sand with, and were interested in using the basic oxygen furnace-slag, the industrial by-product, as fine aggregate. One of the drawbacks to using BOF-slag as a aggregate is to be gradually expanded, and needed the time-consuming process, but some engineers in Korea tackled it recently. In this study, the stabilized BOF-slag was used for lean concrete under the laboratory condition. After testing the several properties - dry density, compressive strength, and young's modulus-, it was found that the dry density was proportionally governed by BOF-slag content and the 7-day compressive-strength was $110\~120\%$ of the natural sand-made. Therefore, BOF-slag is applicable to the lean concrete because they greatly satisfied the required strength, $50kgf/cm^2$.

  • PDF

Strength Properties of the Concrete with Low Carbon Cement and Rapidly Cooled Electric Arc Furnace Oxidizing Slag (급냉 전기로 산화슬래그와 저탄소시멘트를 적용한 콘크리트의 강도특성)

  • Sun, Joung-Soo;Choi, Sun-Mi;Sung, Jong-Hyun;Bok, Young-Jae;Choi, Duck-jin;Kim, jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.164-165
    • /
    • 2013
  • This study is on the performance evaluation of concrete being used the CaMg based low carbon cement(LCC) as a binder and the rapidly cooled electric arc furnace oxidizing slag(EAF slag) as a fine aggregate. When using the sand as a fine aggregate, compressive strength of the concrete using LCC, as a binder, was reduced 9% comparing with that of OPC concrete. However, when using the EAF slag as a fine aggregate, the compressive strength was increased by 9%. We found that combination LCC and EAF slag contribute to the strength properties of concrete.

  • PDF

Utilisation of glass powder in high strength copper slag concrete

  • Zaidi, Kaleem A.;Ram, Shobha;Gautam, Mukesh K.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 2017
  • This study was focused on the use of partial replacement of cement with glass powder in high strength concrete and also copper slag as a partial replacement of coarse sand in concrete. The high strength concrete was prepared with different mineral admixtures like silica fume, fly ash and rice ash husk in different proportions. An experimental investigation has been carried to study about the effect of glass powder on high strength copper slag concrete. The range of glass powder was 10%, 15% and 20% as a replacement of cement. The range of copper slag was 0%, 20%, 40% and 60% as a replacement of natural sand. In addition to the different percentage of fly ash, silica fume, and rice husk ash 5% and 10% was also studied in copper slag concrete. Thus, a total of 51 cubes were casted and compressive strength test was performed on them. The result of the study shows that the value of average compressive strength of concrete after addition of 10%, 15% and 20% of glass powder are 70.47, 72.01 and 73.31 respectively. The value of average compressive strength after addition of 20%, 40% and 60% copper slag as a replacement of sand are 72.18, 74.38 and 73.08 respectively. The value of average compressive strength after addition of 5% and 10% fly ash as a replacement of cement are 71.56 and 73.22. The value of average compressive strength after addition of 5% and 10% silica fume as a replacement of cement are 72.33 and 73.53. The value of average compressive strength after addition of 5% and 10% rice husk ash as a replacement of cement are 72.86 and 69.49. At the level of 20% replacement of cement by glass powder meets maximum strength as compared to that of controlled concrete and copper slag high strength concrete.

Evaluation of Quality Properties of Concrete according to Mixing Proportion of Finex Water Granulated Slag Fine Aggregate (파이넥스 수쇄 슬래그 잔골재의 혼합률에 따른 콘크리트의 품질특성 평가)

  • Choi, Yun-Wang;Cho, Bong-Suk;Oh, Sung-Rok;Park, Man-Seok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • This paper evaluated the quality properties of Finex Water Granulated Slag fine aggregate as part of a study to recycle the Finex Water Granulated Slag generated in korea, and examined the availability as fine aggregate for concrete by comparing properties (properties of fresh concrete, mechanical properties of hardened concrete) of concrete using Finex Water Granulated Slag fine aggregate with properties of concrete using river sand as fine aggregate. From the results of this study, it was found that quality properties of concrete using finex water granulated slag as fine aggregate and concrete using river sand as fine aggregate are equivalent level.

Resistance of concrete made with air- and water-cooled slag exposed to multi-deterioration environments (서냉 및 급냉슬래그를 적용한 콘크리트의 복합열화 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil;Park, Jung-Hee;Park, Se-Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2018
  • PURPOSES : Durability of concrete is traditionally based on evaluating the effect of a single deterioration mechanism such as freezing & thawing action, chloride attack, carbonation and chemical attack. In reality, however, concrete structures are subjected to varying environmental exposure conditions which often results in multi-deterioration mechanism occurring. This study presents the experimental results on the durability of concrete incorporating air-cooled slag(AS) and/or water-cooled slag(WS) exposed to multi-deterioration environments of chloride attack and freezing & thawing action. METHODS : In order to evaluate durable performance of concretes exposed to single- and multi-deterioration, relative dynamic modulus of elasticity, mass ratio and compressive strength measurements were performed. RESULTS :It was observed that multi-deterioration severely affected durability of concrete compared with single deterioration irrespective of concrete types. Additionally, the replacement of cement by AS and WS showed a beneficial effect on enhancement of concrete durability. CONCLUSIONS : It is concluded that resistance to single- and/or multi-deterioration of concrete is highly dependent on the types of binder used in the concrete. Showing the a good resistance to multi-deterioration with concrete incorporating AS, it is also concluded that the AS possibly is an option for concrete materials, especially under severe environments.

An Experimental Study on the Engineering Properties of Concrete using Fine Aggregate of PS ball Slag (풍쇄슬래그 잔골재를 사용한 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Lee Sang-Soo;Song Ha-Young;Kim Eul-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.107-114
    • /
    • 2006
  • In this study, the experiment was carried out to investigate and analyze the engineering properties of concrete using fine aggregate of PS bal slagl. The main experimental variables were water/cement ratio 30, 40, 50(%), water content $170kg/m^3$, replacement ratio of slag fine aggregate 0, 25, 50, 75(%) in experiment I and water/cement ratio 30, 40, 50(%), water content 165, 170, 175($kg/m^3$), replacement ratio of fine aggregate of PS ball 0, 50 in experiment II. According to the test results, the principle conclusions are summarized as follows (1) The workability of slag fine aggregate-mixed concrete tends to improve, as the replacement rate increases. (2) The air content of slag fine aggregate-mixed concrete tends to decrease, as the replacement rate increases. (3) The unit volume weight of slag fine aggregate-mixed concrete tends to significantly increase, as the replacement rate increases. (4) The compressive strength of slag fine aggregate-mixed concrete tends to show more increasing propensity, in case the curing period is relatively long, as the replacement rate increases.