• Title/Summary/Keyword: slag concrete

Search Result 1,364, Processing Time 0.031 seconds

A Study on the EMP Shielding and Physical Properties of Concrete using Electric Arc Furnace Oxidizing Slag aggregate (전기로산화슬래그 골재를 사용한 콘크리트의 EMP 차폐 및 물리적 특성에 관한 연구)

  • Min, Tae-Beom;Lee, Min-Seog;Kim, Hyeong-Cheol;Kim, Jae-Young;Choi, Hyun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.177-178
    • /
    • 2020
  • The EMP slip rate was compared with the general concrete using the electric arc furnace slag as an aggregate. Experimental results show that the shielding rate of concrete specimens using electric arc furnace slag increases. It is considered that the shielding rate is increased due to the high Fe content in the components of the electric arc furnace slag aggregate.

  • PDF

Evaluation on Applicability of Copper and Steelmaking Slags for Use of Heavy Weight Aggregates in Marine Concrete Structure (동슬래그 및 제강슬래그의 해양 콘크리트용 중량 골재 사용성 평가)

  • Moon, Hoon;Jang, Bo-Kil;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • Heavy weight concrete can be used in marine concrete structure to improve resistance against high wave energy. However, heavy weight aggregate, which is an indispensable material for heavy weight concrete, is difficult to be supplied in large quantities because its use is limited due to its high cost. In this work, the applicability of heavy weight by-products, copper and 3 month aged steelmaking slags, were evaluated as sources of heavy weight aggregate for marine concrete structures. Experimental results showed that copper slag was found to be a stable material for marine concrete structure. However, 3 month aged steelmaking slag showed significant expansion by $80^{\circ}$ water immersion test and ASTM C 1260 test. In addition, depth of chloride ion penetration in concrete was higher at which steelmaking slags were located. It was associated with porosity of steelmaking slag, and for this reason, steelmaking slag was not found to be suitable for marine concrete structure.

A Study on Characteristics of Early Age Pore-structure and Carbonation of Ground Granulated Blast Furnace Slag Concrete (고로슬래그미분말 콘크리트의 초기재령특성과 중성화에 관한 연구)

  • 변근주;박성준;하주형;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.107-110
    • /
    • 1999
  • The objective of this study is to obtain characteristics of early age pore-structure and carbonation of concrete using ground granulated blast furnace slag (GGBFS). The durability of GGBFS concrete should be evaluated for wide use of the GGBFS. As for that evaluation, an analysis on early age pore-structure characteristics of GGBFS concrete are very important, Carbonation depths of GGBFS concrete, which are known to be larger than that of OPC, are different according to replacement ratios and fineness of slag. Because sea sand as fine aggregate is much used recently, it is also necessary to analyze characteristics of carbonation of GGBFS concrete. In this study, The micro-pore structure formation characteristics of GGBFS concrete are obtained through the test of GGBFS mortars with different fineness and replacement ratio of GGBFS. The carbonation of GGBFS concrete is also investigated by acclerated carbonation test for early age GGBFS concrete.

  • PDF

Evaluation on Surface Scaling and Frost Resistance for concrete Deteriorated due to Cyclic Freezing and Thawing with Inherent Chloride

  • Kim, Gyu Yong;Cho, Bong Suk;Lee, Seung Hoon;Kim, Moo Han
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.177-185
    • /
    • 2007
  • The purpose of this study is to evaluate freezing-thawing and surface scaling resistance in order to examine the frost durability of concrete in a chloride-inherent environment. The mixing design for this study is as follows: 3 water binder ratios of 0.37, 0.42, and 0.47; 2-ingredient type concrete (50% OPC concrete and 50% ground granulated blast-furnace slag), and 3-ingredient type concrete (50% OPC concrete, 15% fly ash, and 35% ground granulated blast-furnace slag). As found in this study, the decrease of durability was much more noticeable in combined deterioration through both salt damage and frost damage than in a single deterioration through either ofthese; when using blast-furnace slag in freezing-thawing seawater, the frost durability and surface deterioration resistance was evaluated as higher than when using OPC concrete. BF 50% concrete, especially, rather than BFS35%+FA15%, had a notable effect on resistance to chloride penetration and freezing/expansion. It has been confirmed that surface deterioration can be evaluated through a quantitative analysis of scaling, calculated from concrete's underwater weight and surface-dry weight as affected by the freezing-thawing of seawater.

A Study on Flexural Behavior of Precast Box Culvert with Blast Slag (고로슬래그 미분말을 혼입한 프리캐스트 박스 암거의 휨 강도에 관한 연구)

  • Tae, Ghi-Ho;Kim, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2012
  • In this study, the effect of blast furnace slag on precast concrete culvert was assessed by measuring the flexural strength using to full scaled box culvert. As a result, the initial cracking load and yield load of reinforced concrete box converts are increased in comparison with those of the normal concrete box culvert, but the ultimate load is decreased slightly. It can be concluded that use of blast furnace slag induce to flexural strength in precast concrete box culvert greatly improved the serviceability.

An Experimental Study on the Property of Strength for kinds and Replacement ratio of Admixture under Low Temperature (저온 환경하에서의 혼화재 종류 및 대체율에 따른 콘크리트의 강도발현특성에 관한 연구)

  • Kim, Ho-Soo;Jun, Soon-Je;Ban, Seong-Soo;Choi, Sung-Woo;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.687-690
    • /
    • 2005
  • Recently, to consider financial and constructive aspect, usage of Admixture, like Blast- Furnace Slag and Fly-Ash, are increased. These mineral admixtures, a by-product of steel industry, have many advantage, to reduce the heat of hydration, increase in ultimate strength, improve workability and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of mineral admixtures, like Blast-Furnace Slag and Fly ash, it is investigated the strength properties of concrete subjected to under low temperature According to this study, if early curing is carried out before having frost damage, the strength of concrete, subjected to frost damage, is recovered. And to consider increasing effect of strength, it is more effective to use of mineral admixtures, especially to use blast furance slag.

  • PDF

An Experimental Study on the Properties of Concrete by Fineness of Slag Cement (슬래그시멘트의 분말도에 따른 콘크리트의 특성에 관한 실험적 연구)

  • Lee, Jun;Cho, Chul-Ho;Kim, Sang-Yun;Bok, Joung-Soo;Kang, Suk-Pyo;Lee, Min-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.359-360
    • /
    • 2010
  • This study was performed an evaluation of physical & mechanical properties of mortar & concrete by fineness of slag cement. As the results of study, strength of mortar and concrete tended to improve as the fineness of slag cement increased and when considering early strength and 28days strength, the proper content fineness of slag cement was thought to be $5,000cm^2/g$.

  • PDF

An Experimental Study on the Engineering Properties of Concrete According to the Replacement Ratio of Blast-Furnace Slag (고로슬래그 미분말 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Song, Min-Seob;Jang, Jea-Bong;Kim, Gab-Su;Yoon, Jong-Kee;Kim, Jae-Hwan;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.5-8
    • /
    • 2003
  • As a part of efforts to obtain high quality and economical efficiency of concrete, blast-furnace slag has been utilized by means of cement replacement. Therefore superior performance can be ensured, environmental pollution can be prevented and economical advantage can be obtained with utilization by cement replacement. But the studies on the blast-furnace slag are not systematic and reasonable. So, it was planed that basic data in regard to technique of manufacturing and economic improvement of concrete is showed with experimental comparison and investigation of engineering properties of concrete utilizing blast-furnace, industry by-product, as cement replacement in this study.

  • PDF

An Experimental Study on the Engineering Properties of Concrete According to the Replacement Ratio of Blast-Furnace Slag (고로슬래그 미분말 대체율에 따른 콘크리트의 공학적 특성에 관한 실험적 연구)

  • 송민섭;장재봉;김갑수;윤종기;김재환;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.5-8
    • /
    • 2003
  • As a part of efforts to obtain high quality and economical of efficiency of concrete, blast-furnace slag has been utilized by means of cement replacement. Therefore superior performance can be ensured, environmental pollution can be prevented and economical advantage can be obtained with utilization by cement replacement. But the studies on the blast-furnace slag are not systematic and reasonable. So, it was planed that basic data in regard to technique of manufacturing and economic improvement of concrete is showed with experimental comparison and investigation of engineering properties of concrete utilizing blast-furnace, industry by-product, as cement replacement in this study.

  • PDF

CO2 Emission And Cost Analysis Of Blended Concrete (혼합 콘크리트의 CO2 배출 및 비용 분석)

  • Yang, Xu;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.204-205
    • /
    • 2018
  • This paper investigates CO2 emission and cost analysis of blended concrete which was added with fly ash and slag. Three kinds of blended concrete were studied in this investigation, the first blended concrete was added fly ash replacing part of the cement while the second was added slag, the third was added fly ash and slag. Analysis result display that the blended concrete containing fly ash and slag is the optimal choice while considering economic and CO2 emissions.

  • PDF