• Title/Summary/Keyword: slag aggregate

Search Result 441, Processing Time 0.026 seconds

A Study on the Application of the Electric Arc Furnace Slag Aggregate in Concrete (콘크리트용 골재로서 전기로슬래그의 적용성에 대한 연구)

  • 문한영;유정훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.101-111
    • /
    • 1999
  • Compared with the BF slag, the EAF slag has expansion due to the reaction with water and free CaO. Therefore it is specified in Concrete Specification that the FAP slag aggregated must not be used in concrete. Because of this reason it is unusual to use the EAF slag aggregate in concrete. The EAF slag aggregate treated with accelerated and water aging was comparatively satisfied with fundamental properties, which are specific gravity, unit weight, abrasion and immersion expansion ratio, as concrete aggregate. Therefore when we measured the compressive strength till 28 days, we found that the mortar and concrete replacing the natural aggregate with the EAF slag aggregate by 4 steps had better results than the concrete using the natural aggregate in a view of the compressive strength. But at 91 days, concrete using the EAF slag aggregate had no difference with it using the natural aggregate.

The Experimental study on the property of concrete which used Blast furnace slag aggregate (고로슬래그 골재를 사용한 콘크리트 특성에 대한 실험적 연구)

  • 박정우;김상미;김광기;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.489-494
    • /
    • 2001
  • Several studies have reported that Granulated Blast-Furnace Slag improved the properties of concrete. The Granulated Blast-Furnace Slag could be a good alternative in the shortage of aggregate situation. Slag shows the possibility of influential aggregate and effect of environment preservation. This study presents that the basic properties of fresh concrete using Air-cooled Blast-furnace slag aggregate and Water-cooled Blast-furnace slag aggregate. Testing Factors of this study are concrete slump, slump loss, bleeding, and air contents. The result of this study is below. 1) In case of proportion slag and grave is 50 to 50, the biggest slump value is measured. 2) In the concrete using of air-cooled Blast-furnace slag aggregate, the bleeding capacity is a little. In the concrete using of Water-cooled Blast-furnace slag aggregate, the bleeding capacity goes up to 50% increase. 3) As substitution rate of the granulated blast-furnace slag goes up, air content is increased.

  • PDF

Effect of Aging Process to Use Steel Slag for Concrete Aggregate

  • Moon, Han-Young;Yoo, Jung-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.520-525
    • /
    • 2001
  • Compared with the blast furnace slag, steel slag has the expansibility due to the reaction with water and free CaO. Therefore it is specified in Standard Specification for Concrete in Korea that steel slag aggregate must not be used in concrete. So it is unusual to use steel slag aggregate in concrete. In this study steel slag aggregate processed by several aging process was comparatively satisfied with fundamental properties as concrete aggregate, which are specific gravity, absorption, unit weight, percentage of solids and abrasion value etc. And chemical analysis is observed to understand the effect of aging process in steel slag aggregate. When the strength is measured, it is found that the concrete replacing crushed stone with steel slag aggregate had a little problem without sufficient aging process

  • PDF

An Experimental Study on the Properties of Electric Arc Furnace Slag Aggregate with Aging (에이징에 의한 전기로슬래그 골재의 물성에 대한 실험적 연구)

  • 문한영;유정훈;윤희경;이재준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.65-68
    • /
    • 1997
  • In this study, we investigate the difference between natural aggregate and electric arc furnace (EAF) slag one in order to use EAF slag aggregate as coarse aggregate in concrete. We find the physical and chemical properties of EAF slag aggregate according to the different aging processes. We consider the properties of the concrete made with EAF slag aggregate on these bases.

  • PDF

Strength Evaluation of Concrete Containing Ferronickel Slag Aggregate (페로니켈 슬래그 잔골재가 혼입된 콘크리트의 강도 평가)

  • Choi, Min Guen;Son, Jin-Su;Cho, Bong suk;Lee, Jin-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • For sustainable development in the construction industry, blast furnace slag has been used as a substitute for cement in concrete. In contrast, ferronickel slag, which is the by-product generated during smelting to ferronickel used in the manufacturing of stainless steel and nickel alloys, has a limitation to use as a binder and an aggregate due to its expansive characteristics. Recently, stabilization technology of ferronickel slag has been improved and studies have been carried out to utilize ferronicke slag as fine aggregate in concrete. Therefore, in this study, basic mechanical properties of concrete used in ferronickel slag aggregate was evaluated. The compressive strength (24, 30, 40 MPa) and replacement rate of ferronickel slag aggregate (0, 10, 25, 50%) were considered as experimental variables. As a result of test, concrete replaced fine aggregate with 25% ferronickel slag aggregate showed superior performance in the compressive strength and flexural strength.

A Fundamental Property of Concrete Containing Atomized Steel Slag Fine Aggregate after Reforming Process (개질처리한 제강슬래그 잔골재 사용 콘크리트의 성질)

  • 문한영;유정훈;박영훈;김주용;윤표호;김얼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.318-321
    • /
    • 2003
  • Steel slag is produced during steel making process. Compared with the blast furnace slag, converter slag has the expansibility due to the reaction with water and free CaO. Therefore it is specified in Standard Specification for Concrete in Korea that steel slag aggregate must not be used in concrete. In this study, atomized steel slag aggregate is conducted from converter slag by the atomizing method. Atomized steel slag and conventional converter slag are same in its composite by nature in the converter but compounds of the composite become different because of different method of slag treatment. Especially atomized steel slag aggregate overcomes expansibility that is the weak point for usage. It is researched whether it has the possibility, suitability for fine aggregate in concrete. Slump and air content are measured in fresh concrete, compressive and bending strength in hardened concrete. These is compared with control concrete with washed sand.

  • PDF

A Study of the Strength and Durability Properties on Recycled Aggregate Concrete and Blain of Blast Furnace Slag (고로슬래그의 분말도 및 순환골재 치환율에 따른 콘크리트의 강도 및 내구적 특성에 관한 연구)

  • Lim, Myung-Kwan;Park, Moo-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.101-108
    • /
    • 2007
  • Furnace slag powder used currently in Korea needs to add special functions in response to the increase of large-scale projects. In addition, it is advantageous in that it has a lower hydration heat emission rate than ordinary Portland cement and improves properties such as the inhibition of alkali aggregate reaction, watertightness, salt proofness, seawater resistance and chemical resistance. However, furnace slag powder is not self -hardening, and requires activators such as alkali for hydration. Accordingly, if recycled fine aggregate, from which calcium hydroxide is generated, and furnace slag, which requires alkali stimulation, are used together they play mutually complementary roles, so we expect to use the mixture as a resource-recycling construction material. Thus the present study purposed to examine the properties and characteristics of furnace slag powder and recycled aggregate, to manufacture recycled fine aggregate concrete using furnace slag and analyze its performance based on the results of an experiment, to provide materials on concrete using furnace slag as a cement additive and recycled fine aggregate as a substitute of aggregate, and ultimately to provide basic materials on the manufacturing of resource-recycled construction materials using binder and fine aggregate as recycled resources.

A Fundamental Study on the Properties of Concrete Using Electric Arc Furnace Slag (전기슬래그 굵은골재 사용 콘크리트의 제물성)

  • 문한영;유정훈;문재흠;천승환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.72-75
    • /
    • 1998
  • In this study, we investigate the difference of concrete between natural aggregate and electric are furnace(EAF) slag one in oder to use EAF slag aggregate as coarse aggregate in concrete. We find the physical and chemical properties of EAF slag aggregate for the aging process. We consider the properties od the concrete made with EAF slag aggregate which are compressive strength, splitting tensile strength and modulus of elasticity.

  • PDF

A Study on Strength and Permeability of Cooper Slag mixed Porous Concrete (동제련 슬래그를 혼입한 포러스 콘크리트의 강도 및 투수성능에 관한 연구)

  • Shim, Byung-Ju;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.69-72
    • /
    • 2011
  • The purpose of this study is to identify basic property of porous concrete using cooper slag as fine aggregate. The specimens were made with cooper slag with various mixing ratio(10, 20, 30, 50%), porous concrete and porous concrete containing river fine aggregate and crushed fine aggregate, which W/B ratio fixed 0.25. Compressive strength, Flexural strength, coefficient of permeability. From the test results, various fine aggregate mixing ratio improves compressive strength and flexural strength, but cooper slag fine aggregate mixing ratio over 20%, concrete indicates trend to decrease performance of permeability. Concrete containing fine aggregate is improved the performance of permeability and strength compared to other specimen, when age 28days, and cooper slag mixing ratio less than 20% concrete indicates better performance than cooper slag mixing ratio 20% over.

  • PDF

An Experimental Study on the Engineering Properties of Concrete using Fine Aggregate of PS ball Slag (풍쇄슬래그 잔골재를 사용한 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Lee Sang-Soo;Song Ha-Young;Kim Eul-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.107-114
    • /
    • 2006
  • In this study, the experiment was carried out to investigate and analyze the engineering properties of concrete using fine aggregate of PS bal slagl. The main experimental variables were water/cement ratio 30, 40, 50(%), water content $170kg/m^3$, replacement ratio of slag fine aggregate 0, 25, 50, 75(%) in experiment I and water/cement ratio 30, 40, 50(%), water content 165, 170, 175($kg/m^3$), replacement ratio of fine aggregate of PS ball 0, 50 in experiment II. According to the test results, the principle conclusions are summarized as follows (1) The workability of slag fine aggregate-mixed concrete tends to improve, as the replacement rate increases. (2) The air content of slag fine aggregate-mixed concrete tends to decrease, as the replacement rate increases. (3) The unit volume weight of slag fine aggregate-mixed concrete tends to significantly increase, as the replacement rate increases. (4) The compressive strength of slag fine aggregate-mixed concrete tends to show more increasing propensity, in case the curing period is relatively long, as the replacement rate increases.