• Title/Summary/Keyword: slab vibration

Search Result 291, Processing Time 0.024 seconds

Study on the Performance of Waffle slab by Variation on the Section Properties of the Constituent Structural Elements (구조요소의 단면특성에 따른 와플슬래브의 동적특성 분석)

  • Choong, K.K.;Kim, Jae-Yeol;Kim, Kwang-Il;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.61-68
    • /
    • 2009
  • This paper is concerned with the investigation of the structural behavior of waffle structure. Parametric variation on waffle floor thickness, main beam depth and column sizes are imposed to study the effects on mode shapes and natural frequencies of waffle structures. Comparisons between FEM models using shell and 3D-solid elements have also been made. The analysis result has shown that the mode frequencies increase with i) increase in main beam depth at level 2 and ii) decrease in waffle slab thickness at level 3. Both 3D and 2D model shown similar mode shapes. Besides, there is a consistent difference in mode frequencies between 3D and 2D model ranging from 25% to 36%.

  • PDF

Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers

  • Si, Hua;Shen, Daoming;Xia, Jinhong;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • In steel-concrete composite beams, to improve the cracking resistance of the concrete slab in the hogging moment region, a new type of connector in the interface, named uplift-restricted and slip-permitted screw-type (URSP-S) connector has been proposed. This paper focuses on the behavior of steel-concrete composite beams with URSP-S connectors. A total of three beam specimens including a simply supported beam with URSP-S connectors and two continuous composite beams with different connectors arrangements were designed and tested. More specifically, one continuous composite beam was equipped with URSP-S connectors in negative moment region and traditional shear studs in other regions. For comparison, the other one was designed with only traditional shear studs. The failure modes, crack evolution process, ultimate capacities, strain responses at different locations as well as the interface slip of the three tested specimens were measured and evaluated in-depth. Based on the experimental study, the research findings indicate that the larger slip deformation is allowed while using URSP-S connectors. Meanwhile, the tensile stress reduces and the cracking resistance of the concrete slab improves accordingly. In addition, the overall stiffness and strength of the composite beam become slightly lower than those of the composite beam using traditional shear studs. Moreover, the arrangement suggestion of URSP-S connectors in the composite beam is discussed in this paper for its practical design and application.

Structural Performance and Usability of Void Slab Established in T-deck Plate (T형 데크 플레이트 중공형 슬래브의 구조성능 및 사용성능)

  • Hong, Eun-Ae;Chung, Lan;Paik, In-Kwan;Yun, Sung-Ho;Cho, Seung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • In recent years, extension of life span of buildings is becoming an important issue in our society. To improve the life span of buildings, rhamen structure construction and long-spanned structures are advantageous. And in order to achieve this goal, structural elements of buildings must be light and slender. As an alternative method, general porous slabs are used frequently domestically and internationally. But the study on the porous slabs using T-deck plate and assembly of light weight precast construction is insufficient at present. In this study, flexural and fatigue tests were performed on six specimens to verify structural performance and serviceability. The main parameters of the specimens were light weight and T-deck plate construction possibility as well as slab thickness. The test results indicated that the strength of porous slabs using T-deck plate and assembly of light weight were much better than general RC slabs and porous slabs without T-deck plate. And stiffness was much better than that of other tested slabs.

Structural Design And Analysis of Haeundae Doosan We've The Zenith (해운대 두산 위브 더 제니스 구조설계)

  • Park, Ki-Hong;Park, Suk-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.93-98
    • /
    • 2008
  • Haeundae Doosan We've The Zenith project is adjacent to Suyoung-bay, now it is in the process of excavation and foundation work. The main use of the tower is residence which height is 300m and 80 floor, the highest residential reinforced concrete building through the Orient. It is comprised of 3 high- rised buildings and 1 low-rised building, the basement is 230m wide and 200m length sized mass structure. The lateral resistance system is acted effectively against the lateral load and satisfactorily against the wind vibration by the 4 direction extension of the center core wall($700{\sim}800mm$ thickness) and reinforced concrete column set around the slab. Flat-plate slab system(250mm thickness) is adjusted for the slab system and it enables effective work process and shortening the working term by minimizing the ceiling height and not needing to install perimeter beam and drop panel. The strength and serviceability of the structure is able to be monitored and estimated constantly through the health monitoring system during the construction and after the construction.

  • PDF

Evaluation of Serviceability and Flexural Performance for RC Hollow Slab by Hollow Ratio and Damping Ratio (중공율과 감쇠율을 이용한 RC 중공 슬래브의 사용성 및 휨성능 평가)

  • Jong Hoon Kim;Dong Baek Kim;Yong Gon Kim;Jae Won Lee;Jeong Ho Choi
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.930-935
    • /
    • 2022
  • Purpose: The purpose of this study is to evaluate the stiffness reduction and damping ratio of reinforced concrete hollow slabs and to analyze their performance, and to study the effect of the damping effect of hollow bodies and the stiffness reduction on the serviceability of slabs. Method: Test specimen was made in a size of 0.6m*0.21m*3.6m to evaluate the vibration effect of the slab, and the hollow ratio was set in six steps from 0.0% to 30% to measure the change in rigidity and damping according to the change in the hollow ratio. Result: As the hollow ratio increases, rigidity decreases and the natural frequency decreases, but as the mass decreases, the natural frequency increases gradually. Since energy is hardly dissipated up to the hollow ratio of 20%, the hollow ratio should be reduced by 30%. Conclusion: It was found that the bending strength degradation of the slab with a hollow ratio of about 30% is minimized, but an appropriate natural frequency can be maintained, and a certain damping effect can be obtained.

An Efficient Analytical Model for Floor Vibrations in Residential Buildings with Damping layer (방진층을 설치한 주거용 건축물 바닥판의 진동해석을 위한 효율적인 해석모형)

  • Lee, Dong-Guen;Kim, Tae-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.49-61
    • /
    • 2006
  • The floor impact sound insulations are installed frequently for reducing the floor impact sound into the floor slab of the residential buildings in recent years. Therefore the analytical FE model considering the insulation is needed for the sound and vibration analysis of the floor and it is necessary to use a refined finite element model fer considering the large number of modes involved dynamic responses. So it is very difficult to use FE model because of the tiresome task for constructing the FE model, taking a lot of times for analysis and the impossibility of using the proportional damping. The efficient analysis and modeling method are proposed to the dynamic analysis for the floor with damping layer in this study. The floor slabs and finished layers are modeled individually and the spring elements that mean damping layers used to connect two parts. The dynamic analysis by the $Newmark-{\beta}$ method is performed to solve the non-proportional damping problem due to the damping coefficient of insulations.

Comparison of Impact Sound Insulation Performances of Apartment Floors Against Heavy-weight Impact Sources via Field Measurement Data (공동주택 현장 측정자료를 활용한 중량충격원의 바닥충격음 차단성능 비교)

  • Yun, Chang-Yeon;Yeon, Jun-Oh;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.651-658
    • /
    • 2014
  • Notification 2013-611 of MOLIT has come into effect. It relates primarily to new standard impact source. In this study, an in-depth experimental analysis of the difference between a bang machine and an impact ball was performed via field testing of shear wall and flat plate structure at 51 sites. This paper focuses on the difference in single number quantities between a bang machine and an impact ball. At wall thicknesses of 180 and 210 mm in shear wall structure, the single number quantities exhibited differences of 3.1 and 4.5 dB, respectively, and at thicknesses exceeding 250 mm in flat plate structure, the difference was constant at 4.6 dB. With regard to flat plate structures, the single-index difference increased up to 11 dB as the thickness of the floor slab increased. In general, the highest level of contribution for the bang machine was 63 Hz, irrespective of thickness determining bandwidth. The highest level for the impact ball were 63 Hz and 125 Hz. In future research, when reviewing additional field performance measurement data, it will be necessary to consider a detailed examination instead of the current method of uniformly adding 3 dB for all thicknesses and types of structures.

Experiment Evaluation for the Heavy-weight Impact Sound of Dry Double-floor System - Effect of Rubber Hardness and Ceiling Structure - (건식이중바닥구조의 중량충격음에 대한 실험적 평가 - 지지구조 및 천장구조 구성에 따른 영향 -)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • The 1st assessment(performance test) was applied to assure the floor impact sound performance for developing the dry double-floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in sub-structure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5 dB. Based on this result, the 2nd assessment(performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry double-floor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPEII-3 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPEII-3 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

Evaluation for The Heavy-weight Impact Sound Reduction Performance of Dry Double-Floor System (건식 이중바닥구조의 중량충격음 저감성능 평가)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.280-285
    • /
    • 2012
  • The 1st assessment (performance test) was applied to assure the floor impact sound performance for developing the dry double- floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in substructure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5dB. Based on this result, the 2nd assessment (performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry doublefloor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPE-11 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPE-11 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

  • PDF

A Study on Impact Sound Insulation Properties of EPDM Micro Cellular Pad (에틸렌-프로필렌-디엔 삼원 공중합 (EPDM) 발포체의 충격음 저감 특성에 관한 연구)

  • Lee, Kyung-Won;Lee, Jung-Hee;Sohn, Ho-Soung
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.138-148
    • /
    • 2000
  • In order to investigate the possibility of EPDM micro cellular pad (MCP) as an impact sound insulation product, we studied static/dynamic properties and vibration transfer characteristics of EPDM MCP depending on shape, thickness, degrees of foaming by using material test system (MTS) and lab scale mock-up test apparatus. Static/dynamic rigidity is increased when shape is simple. thickness and degrees of foaming low. We could see that dynamic stiffness is proportional to the transmissibility of EPDM MCP. When dynamic stiffness is increased, characteristic peak at transmissibility curve moves high frequency range or snows increase of maximum value of transmissibility. For lab scale mock-up test and finite element method, EPDM MCP shows low vibration velocity and superior mode shape to just concrete plus slab structure. We could confirm that possibility of EPDM MCP as a impact sound insulation product is high.

  • PDF