• Title/Summary/Keyword: slab panels

Search Result 42, Processing Time 0.034 seconds

An Experimental Study on Reinforced Effect Using Double Adhensive Panels in Bridge Deck Slabs (프리케스트판을 이용한 교량상판 단면증설 보강공법에 관한 실험적 연구)

  • 박정기;하경민;지한상;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.791-796
    • /
    • 2000
  • Purpose of this study is to analyze the characteristics and reinforcement effects of restored the RC bridge deck with small precast panel through static load tests and to provide the basic information for the damaged slab decks. In the tests for realizing movement of general RC bridge slabs, 6 samples are prepared and tested. All reinforced samples are restored with 1 or 2-layers precast panels by epoxy mortar. The movement of restored slabs is analyzed and compared with the behavior of non-restored slabs. In result of these tests, tension cracks due to bending moment are show, and after static load test there happens finally a punching shear failure, which is the general type of RC bridge failure. The tests show that restoration of the RC slab results in increasing of loading capacity about 30~50% an restoring panels are stick to slab and moving with slab under loading test.

  • PDF

3- D Analysis of Concrete Slab Track System (콘크리트 슬래브 궤도의 3차원 거동해석)

  • Kim, Jeong-Il;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.955-960
    • /
    • 2004
  • In this study, three dimensional FE analysis of concrete slab track has been performed in order to develop the realistic design of precast concrete slab track. The precast slab track system including the precast concrete slab panel and the grout layer is modeled using the three dimensional solid element with crack softening effect. The input load is computed from the one dimensional beam element model constituting the rail and several discrete springs. To investigate the effect of the longitudinal connection of slab panels, two different systems-continuous and discrete systems - are modeled. The analytical results show that the stresses of both the slab panel and the grout layer are in the range of linear elastic, and, at the interface between two adjacent panels, the primary stresses of the grout layer of the discrete system are higher than those of the continuous system. However, The overall stress levels of the grout layer are very low relative to the strength of th grout.

  • PDF

Behavioral Characteristics of Precast Concrete Slab using Wheel Load Tester (윤하중 시험 차량을 활용한 프리캐스트 콘크리트 바닥판의 거동 특성)

  • Park, Seok-Soon;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The main objective of this research is to present the behaviors of precast concrete slab under moving wheel loads. The simulated moving wheel tester and precast concrete slab were designed for this research. In particular, a comparative analysis between the structural analysis and the moving wheel load test was evaluated in connection parts, deformation, bedding layer of concrete slab panels. In the comparisons of the test results from static and moving wheel loads, the maximum deformations were similar. It should be noted that the deformation of panel 2 from the static loading test was larger than that of other panels, while the deformations of panels 1 and 3 were more noticeable than that of panel 2.

Advanced Composite Material Slabs for Tall Buildings (고층 건물 경량화를 위한 첨단 복합재료 상판)

  • 김덕현;심도식;김성환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.126-133
    • /
    • 1997
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. For each panel, the deflection under the dead and live loads is compared, since both tensile and compressive strengths of the composites are far more higher than those of concrete. All types of sandwich panels considered, except one case, have weights less than one tenth of that of reinforced concrete slab, with deflections less than that of the concrete slab. The cost analysis result and manufacturing methods will be reported later.

  • PDF

A Study of the Advanced Composite Material Slab for Light Weight of Tall Building (초고층빌딩 경량화를 위한 복합신소재 슬래브에 관한 연구)

  • Han, Bong-Koo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. For each panel, the deflection under the dead and live loads is compared, since both tensile and compressive strengths of the composites are far more higher than those of concrete. All types of sandwich panels considered, except one case, have self-weights less than one tenth of that of the reinforced concrete slab, with deflections less than that of the reinforced concrete slab.

Slab panel vertical support and tensile membrane action in fire

  • Abu, Anthony K.;Burgess, Ian W.;Plank, Roger J.
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.217-230
    • /
    • 2008
  • The increasing use of performance-based approaches in structural fire engineering design of multi-storey composite buildings has prompted the development of various tools to help quantify the influence of tensile membrane action in composite slabs at elevated temperatures. One simplified method which has emerged is the Bailey-BRE membrane action method. This method predicts slab capacities in fire by analysing rectangular slab panels supported on edges which resist vertical deflection. The task of providing the necessary vertical support, in practice, requires protecting a panel's perimeter beams to achieve temperatures of no more than $620^{\circ}C$ at the required fire resistance time. Hence, the integrity of this support becomes critical as the slab and the attached beams deflect, and large deflections of the perimeter beams may lead to a catastrophic failure of the structure. This paper presents a finite element investigation into the effects of vertical support along slab panel boundaries on the slab behaviour in fire. It examines the development of the membrane mechanism for various degrees of edge-beam protection, and makes comparisons with predictions of the membrane action design method and various acceptance criteria.

A New Slab Track System (새로운 슬래브궤도 시스템)

  • 강보순
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.213-218
    • /
    • 2002
  • A new German high speed railway slab track was investigated. The construction objective was to provide a durable and maintenance free track system consisting of precast concretepanels of consistently high quality and highest achievable accuracy in track geometry. The System on the basis of precast panels similar to the slab track system constructed on the line Dachau- Karlsfeld in 1997.

  • PDF

Experimental Fatigue Performance of Concrete Slab with I-shaped Steel (I 형강 격자 상판의 피로 성능에 관한 실험적 연구)

  • 박창규;김용곤;김철환;이재형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.541-546
    • /
    • 2000
  • Recently, there have been increased mush concerns about repair and rehabilitation works for aged concrete structures to keep up with rapid economic growth in Korea since the early 1970's. In particular, it is believed in these days that there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory, and will be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This test is to investigate physical properties of I-Beam with punch holes itself, and then to investigate structural properties of assembled I-Beam panels through static and fatigue test, of which can be utilized for the development of new construction method of concrete slab in bridge structure.

  • PDF

Experimental study for Concrete-filled I-beam Grid Slab (I 형강 격자 상판에 대한 실험적 연구)

  • 박창규;석윤호;김철환;김용곤;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.458-463
    • /
    • 2000
  • Recently, there are increasing much concerns about repair and rehabilitation works for aged Concrete Structures which had been constructed on around the 1970's for rapid economic growth in Korea. In particular, it is believed that there are many aged concrete slabs for Highway bridges in these days. Thus new construction method of concrete slabs are strongly needed to minimize the traffic congestion during the repair works. The objective of this research is to develop the new constructional method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion to be occurred during the repair and rehabilitation works of aged concrete slab, and can also assure the reliable quality through the minimization of in-situ works at the site. I-beams with punch holes will be manufactured in accordance with the specification in the factory, and will be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate physical properties of I-Beam with punch holes itself, and then to investigate structural properties of assembled I-Beam panels through static and fatigue test, of which result can be utilized for the development of the new constructional method for concrete slab in bridge structure.

  • PDF

Steel Fiber Reinforcing Effect Analysis of Slab Panel Structure and Assessment Technics of Toughness (강섬유보강 패널구조의 보강효과 분석 및 인성평가 기법)

  • Jeon, Chan-Ki;Park, Sun-Kyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.209-220
    • /
    • 1999
  • This paper is aimed to evaluate the effectiveness of flexural toughness of slab panel structures($60{\times}60{\times}10$) reinforced by steel fiber instead of wire mesh. Steel fiber used in this study is double hooked Dramix type fiber. And the fiber length is 60mm, diameter is 0.8mm, Various assessment methods of toughness index are used to estimate the proper effectiveness. In this experimental study, we find that Johnston, JCI-SF4 and EFNARC method are more effective to assess the flexural toughness of slab panels than the others. And the steel fiber is very effective alternative material to reinforce slab panel structures instead of wire mesh. Fiber volume fraction of 0.5~0.75% is more useful than the others in enhancing the post-peak energy absorption and toughness index by Johnston's $I_{5.5}$ assessment method. And the slab panels reinforcing with steel fiber are more resistant to crack propagation than wire mesh reinforcing slabs.