• Title/Summary/Keyword: slab member

Search Result 114, Processing Time 0.021 seconds

Analysis Evaluation of Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (격점구조형식에 따른 복합트러스교의 비틀림 거동 해석)

  • Choi, Ji-Hun;Jung, Kwang-Hoe;Kim, Tae-Kyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.3-12
    • /
    • 2014
  • Hybrid Truss Bridge (HTB) uses steel truss webs instead of concrete webs in prestressed box girder bridges, which is becoming popular due to its structural benefits such as relatively light self-weight and good aesthetics appearance. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The research was performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showed that HTB applied to a curved bridge or an eccentrically loaded bridge had a weak torsional capacity compared to an ordinary PSC box girder bridge due to the open cross-sectional characteristic of HTB. Therefore, three types of girders with different joint system between truss web member and concrete slab were tested for their torsional capacity. In this study, the three different types of HTB girders under torsional loading were simulated using FEM analysis to investigate the torsional behavior of HTB girders more in detail. The results are discussed in detail in the paper.

An Experimental Study on the Structural Behavior of Steel-Concrete Composite Rahmen Bridge with Hinged End Supports (하단힌지 강합성 라멘교의 구조적 거동에 대한 실험적 연구)

  • Choi, Jin Woo;Jang, Min Jun;Cheon, Jin Uk;Yoon, Soon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.195-205
    • /
    • 2015
  • The rahmen bridge is well known common type of bridge in which all members are connected rigidly. The rahmen bridge is built for several situations because it has many advantages such as no need of bridge bearing system, easy of maintenance, reduction of the cross-sectional area of superstructure, and relatively low construction cost compared with other bridge types. Recently, to lengthen the span of rahmen bridge system, steel-concrete composite beam is used for superstructure of rahmen bridge instead of normal concrete girder with slab. However, member forces are increased because of extension of span length of superstructure and substructure is designed and constructed inefficiently when steel-concrete composite rahmen bridge is designed. In this study, new-type steel-concrete composite bridge is suggested. New-type steel-concrete composite rahmen bridge is adopted hinge connection between abutment and foundation for the reduction of the bending momemt at the foundation. In this study, we present the results of experiment conducted to estimate the load carrying capacity of new-type steel-concrete composite rahmen bridge and the structural characteristics of hinge connection.

Structural Behavior of Steel Wire Truss Deck with Continuous Lattices to the Longitudinal Direction (길이방향으로 연속된 래티스를 가지는 철선 트러스데크의 구조 거동)

  • Lee, Sung Ho;Park, Hyung Chul;Oh, Bo Hwan;Cho, Soon Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2009
  • A truss deck system that has replaced the slab form conventional method has become widely used in the construction of reinforced concrete structures as well as steel structures. The current commercial products, however, have some problems. The discontinuity between the lattice wires on the joint of the bottom wire induces vierendeel behavior, which increases the deflection of the system. In this research, a new truss deck system with continuous lattice wires on the level of the bottom wire was developed to reduce the system's vierendeel behavior and to improve its deformation capacity. To investigate the system's structural behavior, an experimental test and an analysis were performed. The main parameters of the test and analysis were the longitudinal shape and spacing of the lattices. To simulate the loading condition in the construction field, uniform construction loads were directly applied on the deck plates of the analysis model and the test specimens. The results of such analysis and test revealed that the longitudinal shape of the lattice wires is a major factor affecting the structural behavior of a steel wire truss deck. Thus, continuous lattice wires could result in decreased vierendeel behavior in the steel wire truss deck. It was also found that the truss deck system with lattices spaced longer than in the conventional products could be effectively used without increasing the member stresses.

The Economic Analysis of Underground Parking Lot Frames adopting 8-Bay Parking Modules (8-Bay 주차모듈을 적용한 아파트 지하주차장 구조의 경제성 분석)

  • Yu, Yongsin;Yoon, Bohyung;Kim, Minsu;Kim, Taewan;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.52-61
    • /
    • 2019
  • On 30 June, 2017, the Ministry of Land, Infrastructure, and Transport announced the minimum size of parking section will be expanded in parking lots. The expansion of parking section could lead to increase in apartment prices because of increase in total area of the parking lots. It is necessary to adjust the column spacing and number in the parking lots and to apply the 8-Bay long-span parking module with good parking efficiency. According to the study, the construction cost of the 6-Bay module and 8-Bay module was almost the same. But The 8-Bay module was more economical than the 6-Bay module because of the reduction in total area of 8-Bay multi-moduel. The Result of construction cost of 8-Bay modules, Removal Deck-plate RC system was most economical. While the construction cost of PC system was higher due to increase in volume of the member, it would ensure sufficient economy by reducing the girder height to apply a pre-stress method. Also, the construction cost of hollow slab system was the highest. But it could be used as the underground parking lots for apartment, because it had the lowest cost per square meter. This Study has a academic significance by proving the applicability of the 8-Bay Module to underground parking lot of apartment. And it is expected that this study will be used as basic data to derive optimal construction method that applies 8-Bay Module.