• Title/Summary/Keyword: slab depth

Search Result 216, Processing Time 0.026 seconds

Behavior of one way reinforced concrete slabs with styropor blocks

  • Al-Azzawi, Adel A.;Abbas, J;Al-Asdi, Al-Asdi
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.451-468
    • /
    • 2017
  • The problem of reducing the self-weight of reinforced concrete structures is very important issue. There are two approaches which may be used to reduced member weight. The first is tackled through reducing the cross sectional area by using voids and the second through using light weight materials. Reducing the weight of slabs is very important as it constitutes the effective portion of dead loads in the structural building. Eleven slab specimens was casted in this research. The slabs are made one way though using two simple supports. The tested specimens comprised three reference solid slabs and eight styropor block slabs having (23% and 29%) reduction in weight. The voids in slabs were made using styropor at the ineffective concrete zones in resisting the tensile stresses. All slab specimens have the dimensions ($1100{\times}600{\times}120mm$) except one solid specimens has depth 85 mm (to give reduction in weight of 29% which is equal to the styropor block slab reduction). Two loading positions or cases (A and B) (as two-line monotonic loads) with shear span to effective depth ratio of (a/d=3, 2) respectively, were used to trace the structural behavior of styropor block slab. The best results are obtained for styropor block slab strengthened by minimum shear reinforcement with weight reduction of (29%). The increase in the strength capacity was (8.6% and 5.7%) compared to the solid slabs under loading cases A and B respectively. Despite the appearance of cracks in styropor block slab with loads lesser than those in the solid slab, the development and width of cracks in styropor block slab is significantly restricted as a result of presence a mesh of reinforcement in upper concrete portion.

Relationship between Crack Propagation Depth and Crack Width Movement in Continuously Reinforced Concrete Slab Systems (연속철근 콘크리트 슬래브 시스템의 균열진전 깊이와 균열폭 거동 관계 분석)

  • Cho, Young Kyo;Kim, Seong-Min;Oh, Han Jin;Choi, Lyn;Seok, Jong Hwan
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.83-90
    • /
    • 2015
  • PURPOSES : The purpose of this study is to investigate the relationship between the crack propagation depth through a slab and crack width movement in continuously reinforced concrete slab systems (CRCSs). METHODS : The crack width movements in continuously reinforced concrete pavement (CRCP) and continuously reinforced concrete railway track (CRCT) were measured in the field for different crack spacings. In addition, the crack width movements in both CRCP and CRCT were simulated using finite element models of CRCP and CRCT. The crack width movements, depending on the unit temperature change, were obtained from both the field tests and numerical analysis models. RESULTS : The experimental analysis results show that the magnitudes of the crack width movements in CRCSs were related to not only the crack spacing, but also the crack propagation depth. In CRCP, the magnitudes of the crack width movements were more closely related to the crack propagation depths. In CRCT, the crack width movements were similar for different cracks since most were through cracks. If the numerical analysis was performed to predict the crack width movements by assuming that the crack propagates completely through the slab depth, the predicted crack width movements were similar to the actual ones in CRCT, but those may be overestimated in CRCP. CONCLUSIONS : The magnitudes of the crack width movements in CRCSs were mainly affected by the crack propagation depths through the slabs.

A Monte Carlo Study of the Diffusion Process of Thomson-Scattered Line Radiation in Phase Space

  • Hyeon Yong Choe;Hee-Won Lee
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • We investigate the diffusion process of Thomson-scattered line photons in both real space and frequency space through a Monte Carlo approach. The emission source is assumed to be monochromatic and point-like embedded at the center of a free electron region in the form of a sphere and a slab. In the case of a spherical region, the line profiles emergent at a location of Thomson optical depth τTh from the source exhibit the full width of the half maximum σλ ≃ τ1.5Th. In the slab case, we focus on the polarization behavior where the polarization direction flips from the normal direction of the slab to the parallel as the slab optical depth τTh increases from τTh ≪ 1 to τTh ≫ 1. We propose that the polarization flip to the parallel direction to the slab surface in optically thick slabs is attributed to the robustness of the Stokes parameter Q along the vertical axis with respect to the observer's line of sight whereas randomization dominates the remaining region as τTh increases. A brief discussion on the importance of our study is presented.

POLARIZATION OF LYMAN α EMERGENT FROM A THICK SLAB OF NEUTRAL HYDROGEN

  • AHN, SANG-HTEON;LEE, HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • Star forming galaxies found in the early universe exhibit asymmetric Lyα emission line that results from multiple scattering in a neutral thick medium surrounding the Lyα emission source. It is expected that emergent Lyα will be significantly polarized through a large number of resonance scattering events followed by a number of successive wing scatterings. In this study we adopt a Monte Carlo method to calculate the polarization of Lyα transferred in a very thick static slab of HI. Resonantly scattered radiation associated with transitions between is only weakly polarized and therefore linear polarization of the emergent Lyα is mainly dependent on the number of off-resonant wing scattering events. The number of wing scattering events just before escape from the slab is determined by the product of the Doppler parameter a and the line center optical depth τ0, which, in turn, determines the behavior of the linear polarization of Lyα. This result is analogous to the study of polarized radiative transfer of Thomson scattered photons in an electron slab, where the emergent photons are polarized in the direction perpendicular to the slab when the scattering optical depth is small and polarized in the parallel direction when the slab is optically thick. Our simulated spectropolarimetry of Lyα shows that the line center is negligibly polarized, the near wing parts polarized in the direction parallel to the slab and the far wing parts are polarized in the direction perpendicular to the slab. We emphasize that the flip of polarization direction in the wing parts of Lyα naturally reflects the diffusive nature of the Lyα transfer process in thick neutral media.

Effect of phase transformations on buckling behavior of subducting slab and tectonic implication (상전이가 섭입 슬랩의 좌굴에 미치는 영향과 지체구조적 암시)

  • Lee, Changyeol
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.657-675
    • /
    • 2018
  • The apparent thickening of the subducting slab in the shallow lower mantle has been attributed to slab buckling. However, the scaling laws have not been quantitatively evaluated for the buckling behavior of the subducting slab when phase transformations are considered. Thus, two-dimensional dynamic subduction experiments are formulated to evaluate the effect of phase transformations on the buckling behavior of the subducting slab. The model calculations show that the phase transformation from olivine to wadsleyite at a depth of 410 km plays an important role in the development of slab buckling; increased slab pull due to the endothermic phase transformation accelerates slab sinking in the upper mantle and the subducting slab reaches the lower mantle in a shorter time than that of the experiments without the phase transformation. However, the phase transformation from ringwoodite to perovskite plus $magnesiow{\ddot{u}}stite$ at a depth of 660 km retards slab sinking into the lower mantle and the subducting slab tends to be accumulated in the transformation (transition) zone. Buckling analyses show that the scaling laws predict the buckling amplitude and period of the subducting slab with small relative errors even if the phase transformations are considered. The universal phenomenon of the slab buckling can explain apparent slab thickening in the shallow lower mantle and transformation zone under the subduction zones such as Java-Sunda and Northeast Japan. In addition, the buckling behavior of the subducting slab may be related to the periodic compressions and extensions in the Cretaceous Gyeongsang basin.

Flexural Capacity of Encased Composite Beam with Hollow Core PC Slabs (매입형 합성보의 휨 성능 평가 -속 빈 프리캐스트 콘크리트 슬래브와 비대칭 H형강 철골보-)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.587-598
    • /
    • 2004
  • In this study, an experiment was conducted on the Slim Floor system, using a hollow core PC slab, which could reduce the over-all depth of a composite beam. The Slim Floor system is a method used in steel frame multi-story building construction, in which the structural depth of each floor is minimized after incorporating the steel floor beams within the depth of the concrete floor slab. This experimental study focused on the flexural behavior of the partially connected Slim Floor system with asymmetric steel beams encased in hollow core PC slabs. Ten full-scale specimens were constructed and tested in this study, with different steel beam heights, hollow core PC slabs, slab widths, and PC slab bearings. Observations made in line with the experiments indicated that the degree of shear connection without additional shear connection was 0.48-0.98 times more than that of the full shear connection, due to inherent mechanical and chemical bond stress.

A Study on the Optimal Design Method of Reinforced Concrete Two Way Slabs (Direct Method에 의한 鐵筋콘크리트 二方向슬라브의 最適設計에 관한 硏究)

  • Kim, Yong-Hee;Lyu, Hong-Leal;Park, Moon-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.97-105
    • /
    • 1984
  • We have, at present, found some studies on the optimum design of reinforced concrete about the simple slab but very few about the multi-story and multi-span slab. The aim of this study is to make a optimum design of coalesced beam and column slab constructure. Some results of the evaluation by using the optimalized algorithm that was developed in this study are as follows. 1. Slab was mainly restricted by the constraint of effective depth, bending moment, and minimum steel ratio; especially the effective depth was the preceding crifical constraint. In the optimum design of slab, therefore, the constraint about the minimum thickness should be surely considered. 2. This optimum design is good economy as much as some 3.4&~6.2% compared with the conventional design method. 3. In most case, it was converged by 3 to 6 iteratin regardless of the highest or lowest value and only in case of N=1 and case 1, there is a little oscillation after the 3rd iteration but it makes no difference in taking either the highest or lowest value because the range of oscillation is low as much as about 1.2% of the total construction cost. 4. In this study the result seeking for constraints that make no difference in the least cost design shows that shear stress and maximum steel ration may not be considered in it. 5. Bending moment was converged by one time iteration regardless of the initial value, while steel ratio, in most case, by two times because both bending moment and steel ratio are the fuction of effective depth.

  • PDF

An Experimental Study on the Development of Semi-Slim Composite Beam with Traperzodial Composite Deck Plate (골형 합성 테크플레이트를 사용한 반슬림 합성보의 개발에 관한 실험적 연구)

  • Bae, Kyu-Woong;Oh, Sang-Hoon;Heo, Byung-Wook;Yang, Myung-Sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.29-40
    • /
    • 2001
  • Steel frames are increasingly used in commercial buildings. and most steel frames are designed to achieve composite action with the concrete floor slab. The advantages of 'composite construction' are now well understood in terms of structural economy. good performance in service. and ease of construction. But. these conventional composite construction system are difficult to apply steel framed apartment due to their large depth. So. in this study we developed Semi Slim Floor system which could reduce the overall depth of composite beam. Semi Slim Floor system is a method of steel frame multi-story building construction in which the structural depth of each floor is minimised by incorporating the steel floor beams within the depth of the concrete floor slab. Twelve composite slab specimens with different deck-type. slab width. with or without stud bault and concrete topping thickness were tested to evaluate the flexural capacity.

  • PDF

Structural Analysis and Design of Post-Tension Transfer Slab (포스트텐션 전이슬래브의 구조해석 및 설계방법)

  • Yoon, Jang-Keun;Kang, Su-Min;Kim, Ook-Jong;Lee, Do-Bum;Choo, Moon-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.19-20
    • /
    • 2010
  • Post-tensioning is an effective way to reduce both the depth and reinforcement contents for the reinforced concrete member. In this research, we applied post-tensioning to transfer slab in shear wall type apartment building to reduce depth and reinforcement of transfer slab.

  • PDF

An Analysis on the Early Frost Damage According to the Component Thickness Changes of the Normal Strength Concrete Slab in Winter (겨울철 보통강도 콘크리트의 부재 두께 변화에 따른 초기동해 피해분석)

  • Kim, Tae-Woo;Lee, Yong-Jun;Kim, Dong-Gyu;Kim, Dae-Gun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.145-146
    • /
    • 2018
  • In this study, the purpose of the study is to determine the depth of damage caused by early frost damage in concrete slab structures under the conditions of external temperature during winter. In other words, we intend to analyze the depth variation of the early frost damage as the thickness of the normal strength concrete slab members changes. As a result, the thinner the component was, the deeper the early frost damage was found to be, and the resulting increase in brightness of the concrete was delayed. and It is analyzed that under this test condition, an early frost damage was created with a thickness of 50 mm for the member and a thickness of 39 mm for the member of 300 mm.

  • PDF