DOI QR코드

DOI QR Code

Effect of phase transformations on buckling behavior of subducting slab and tectonic implication

상전이가 섭입 슬랩의 좌굴에 미치는 영향과 지체구조적 암시

  • Lee, Changyeol (Faculty of Earth Systems and Environmental Sciences, Chonnam National University)
  • 이창열 (전남대학교 지구환경과학부)
  • Received : 2018.09.28
  • Accepted : 2018.12.26
  • Published : 2018.12.31

Abstract

The apparent thickening of the subducting slab in the shallow lower mantle has been attributed to slab buckling. However, the scaling laws have not been quantitatively evaluated for the buckling behavior of the subducting slab when phase transformations are considered. Thus, two-dimensional dynamic subduction experiments are formulated to evaluate the effect of phase transformations on the buckling behavior of the subducting slab. The model calculations show that the phase transformation from olivine to wadsleyite at a depth of 410 km plays an important role in the development of slab buckling; increased slab pull due to the endothermic phase transformation accelerates slab sinking in the upper mantle and the subducting slab reaches the lower mantle in a shorter time than that of the experiments without the phase transformation. However, the phase transformation from ringwoodite to perovskite plus $magnesiow{\ddot{u}}stite$ at a depth of 660 km retards slab sinking into the lower mantle and the subducting slab tends to be accumulated in the transformation (transition) zone. Buckling analyses show that the scaling laws predict the buckling amplitude and period of the subducting slab with small relative errors even if the phase transformations are considered. The universal phenomenon of the slab buckling can explain apparent slab thickening in the shallow lower mantle and transformation zone under the subduction zones such as Java-Sunda and Northeast Japan. In addition, the buckling behavior of the subducting slab may be related to the periodic compressions and extensions in the Cretaceous Gyeongsang basin.

하부 맨틀의 상부에서 관찰되는 섭입된 해양판의 겉보기 두꺼워짐은 과거 연구를 통해 슬랩 좌굴에 의한 것으로 제안되었다. 그러나, 맨틀의 상전이가 슬랩 좌굴에 미치는 영향을 정량적으로 평가하고 이를 규모 법칙으로 검증한 연구는 거의 이루어지지 못하였다. 이 연구에서는 상전이를 고려한 2차원 컴퓨터 섭입 모델링을 수행하여 상전이가 슬랩 좌굴에 미치는 영향에 대해 정량적으로 평가하고 규모 법칙으로 검증하였다. 실험 결과는 410 km 깊이에서 발생하는 감람석-와드슬레이아이트 상전이가 슬랩 좌굴의 발달에 중요한 영향을 미친다는 것을 보였다. 흡열 상전이는 상부 맨틀에서 섭입 슬랩의 침강을 가속시켜 660 km 깊이에 존재하는 불연속면에 빠르게 도달하게 한다. 그러나 660 km 깊이에 존재하는 링우다이트-페로브스카이트+마그네시오우스타이트 상전이는 슬랩 좌굴의 발달에 상대적으로 작은 영향을 미치는데 그 상전이가 섭입 슬랩의 하부 맨틀 침강을 지연시켜 전이대에 섭입한 슬랩을 누적시키기 때문이다. 그럼에도 불구하고 슬랩 좌굴은 규모 법칙을 20% 이내의 오차에서 잘 만족한다. 이처럼 슬랩 좌굴은 맨틀에서 발생하는 보편적인 현상으로써 자바-순다 및 동북 일본 섭입대에서 관찰되는 하부 맨틀의 상부와 전이대에서의 슬랩 좌굴을 잘 설명한다. 또한 백악기 시기 경상 분지가 겪은 주기적인 압축 및 인장이 슬랩 좌굴에 의한 가능성을 암시한다.

Keywords

Acknowledgement

Grant : 기상.지진 See-At기술개발연구

Supported by : 한국연구재단, 기상청

References

  1. Akaogi, M., Takayama, H., Kojitani, H., Kawaji, H. and Atake, T., 2007, Low-temperature heat capacities, entropies and enthalpies of $Mg_2SiO_4$ ploymorphs, and ${\alpha}$-${\beta}$ -${\gamma}$ and post-spinel phase relations at high pressure. Physics and Chemistry of Minerals, 34, 169-183. https://doi.org/10.1007/s00269-006-0137-3
  2. Behounkova, M. and Cizkova, H., 2008, Long-wavelength character of subducted slabs in the lower mantle. Earth and Planetary Science Letters, 275, 43-53. https://doi.org/10.1016/j.epsl.2008.07.059
  3. Billen, M.I. and Hirth, G., 2007, Rheologic controls on slab dynamics. Geochemistry Geophysics Geosystems, 8, Q08012.
  4. Bina, C. and Wood, B., 1987, Olivine-spinel transitions:Experimental and thermodynamic constraints and implications for the nature of the 400-km seismic discontinuity. Journal of Geophysical Research, 92, 4853-4866. https://doi.org/10.1029/JB092iB06p04853
  5. Chough, S.K. and Sohn, Y.K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Science Reviews, 101, 225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  6. Christensen, U.R., 1996, The influence of trench migration on slab penetration into the lower mantle. Earth and Planetary Science Letters, 140, 27-39. https://doi.org/10.1016/0012-821X(96)00023-4
  7. Christensen, U.R., 1997, Influence of chemical buoyancy on the dynamics of slabs in the transition zone. Journal of Geophysical Research-Solid Earth, 102, 22435-22443. https://doi.org/10.1029/97JB01342
  8. Christensen, U.R. and Yuen, D.A., 1985, Layered convection induced by phase-transitions. Journal of Geophysical Research, 90, 291-300.
  9. Cserepes, L., Yuen, D.A. and Schroeder, B.A., 2000, Effect of the mid-mantle viscosity and phase-transition structure on 3D mantle convection. Physics of the Earth and Planetary Interiors, 118, 135-148. https://doi.org/10.1016/S0031-9201(99)00140-5
  10. Duffy, T.S., 2005, Synchrotron facilities and the study of the Earth's deep interior. Reports on Progress in Physics, 68, 1811-1859. https://doi.org/10.1088/0034-4885/68/8/R03
  11. Dziewonski, A.M. and Anderson, D.L., 1981, Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25, 297-356. https://doi.org/10.1016/0031-9201(81)90046-7
  12. Elliott, T., 2003, Tracers of the slab. In: Eiler J (ed.) Inside the Subduction Factory, Washington, DC: American Geophysical Union, 138, 23-43.
  13. Fei, Y., Van Orman, J., Li, J., van Westrenen, W., Sanloup, C., Minarik, W., Hirose, K., Komabayashi, T., Walter, M. and Funakoshi, K., 2004, Experimentally determined postspinel transformation boundary in $Mg2SiO_4$ using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research, 109.
  14. Frost, D.J., 2008, The Upper Mantle and Transition Zone. Elements, 4, 171-176. https://doi.org/10.2113/GSELEMENTS.4.3.171
  15. Fukao, Y., Widiyantoro, S. and Obayashi, M., 2001, Stagnant slabs in the upper and lower mantle transition region. Review of Geophysics, 39, 291-323. https://doi.org/10.1029/1999RG000068
  16. Gaherty, J.B. and Hager, B.H., 1994, Compositional vs thermal buoyancy and the evolution of subducted lithosphere. Geophysical Research Letters, 21, 141-144. https://doi.org/10.1029/93GL03466
  17. Griffiths, R.W. and Turner, J.S., 1988, Folding of Viscous Plumes Impinging On A Density Or Viscosity Interface. Geophysical Journal, 95, 397-419. https://doi.org/10.1111/j.1365-246X.1988.tb00477.x
  18. Gu, Y.J., Okeler, A. and Schultz, R., 2012, Tracking slabs beneath northwestern Pacific subduction zones. Earth and Planetary Science Letters, 331-332, 269-280. https://doi.org/10.1016/j.epsl.2012.03.023
  19. Guillou-Frottier, L., Buttles, J. and Olson, P., 1995, Laboratory experiments on the structure of subducted lithosphere. Earth and Planetary Science Letters, 133, 19-34. https://doi.org/10.1016/0012-821X(95)00045-E
  20. Gurnis, M. and Hager, B.H., 1988, Controls of the structure of subducted slabs. Nature, 335, 317-321. https://doi.org/10.1038/335317a0
  21. Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevic, S., Muller, R.D., Boyden, J., Seton, M., Manea, V.C. and Bower, D.J., 2012, Plate tectonic reconstructions with continuously closing plates. Computers & Geosciences, 38, 35-42. https://doi.org/10.1016/j.cageo.2011.04.014
  22. Hirth, G. and Kohlstedt, D., 2003, Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. in Inside the Subduction Factory, Geophysical Monograph, 138, 83-105.
  23. Hofmeister, A.M., 1999, Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes. Science, 283, 1699-1706. https://doi.org/10.1126/science.283.5408.1699
  24. Hughes, T., 1987, The Finite Element Method: Linear Static and Dynamics Finite Element Analysis. Couricr Corporation.
  25. Hughes, T.J.R. and Brooks, A., 1979, 'A multidimensional upwind scheme with no crosswind diffusion', in T. J. R. Hughes, ed. Finite element methods for convection dominated flows, AMD 34, 19-35, Presented at the Winter Annual Meeting of the ASME, Amer. Soc. Mech. Engrs. (ASME), New York.
  26. Ita, J. and King, S.D., 1994, Sensitivity of convection with an endothermic phase change to the form of governing equations, initial conditions, boundary conditions, and equation of state. Journal of Geophysical Research-Solid Earth, 99, 15919-15938. https://doi.org/10.1029/94JB00852
  27. Ita, J. and King, S.D., 1998, The influence of thermodynamic formulation on simulations of subduction zone geometry and history. Geophysical Research Letters, 25, 1463-1466. https://doi.org/10.1029/98GL51033
  28. Ito, E. and Takahashi, E., 1989, Postspinel Transformations in the System Mg2SiO4-FeSiO4 and Some Geophysical Implications. Journal of Geophysical Research, 94, 10637-10646. https://doi.org/10.1029/JB094iB08p10637
  29. Karason, H. and van der Hilst, R.D., 2001, Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, P-diff). Journal of Geophysical Research, 106, 6569-6587. https://doi.org/10.1029/2000JB900380
  30. Karato, S.-I. and Wu, P., 1993, Rheology of the upper mantle:a synthesis. Science, 260, 771-778. https://doi.org/10.1126/science.260.5109.771
  31. King, S.D., 2002, Geoid and topography over subduction zones: The effect of phase transformations. Journal of Geophysical Research, 107.
  32. King, S.D., 2007, Mantle Downwellings and the Fate of Subducting Slabs: Constraints from Seismology, Geoid Topography, Geochemistry, and Petrology, in: Gerald, S. (Ed.), Treatise on Geophysics. Elsevier, Amsterdam, pp. 325-370.
  33. King, S.D. and Ita, J., 1995, Effect of slab rheology on mass-transport across a phase-transition boundary. Journal of Geophysical Research, 100, 20211-20222. https://doi.org/10.1029/95JB01964
  34. King, S.D., Raefsky, A. and Hager, B.H., 1990, Conman:vectorizing a finite element code for incompressible two-dimensional convection in the Earth's mantle. Physics of the Earth and Planetary Interiors, 59, 195-207. https://doi.org/10.1016/0031-9201(90)90225-M
  35. Lee, C. and King, S.D., 2011, Dynamic buckling of subducting slabs reconciles geological and geophysical observations. Earth and Planetary Science Letters, 312, 360-370. https://doi.org/10.1016/j.epsl.2011.10.033
  36. Liu, W. and Li, B., 2006, Thermal equation of state of $(Mg_{0.9}Fe_{0.1})_2SiO_4$ olivine. Physics of the Earth and Planetary Interiors, 157, 188-195. https://doi.org/10.1016/j.pepi.2006.04.003
  37. Ranalli, G., 1991, The microphysical approach to mantle rheology. In: Sabadini, R., Lambeck, K., Boschi, E. (Eds.), Glacial Isostacy, Sea-Level and Mantle Rheology, 343-378.
  38. Ren, Y., Stutzmann, E., van der Hilst, R.D. and Besse, J., 2007, Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history. Journal of Geophysical Research, 112, B01302.
  39. Ribe, N.M., 2003, Periodic folding of viscous sheets. Physical Review E, 68, 036305. https://doi.org/10.1103/PhysRevE.68.036305
  40. Ribe, N.M., Stutzmann, E., Ren, Y. and van der Hilst, R., 2007, Buckling instabilities of subducted lithosphere beneath the transition zone. Earth and Planetary Science Letters, 254, 173-179. https://doi.org/10.1016/j.epsl.2006.11.028
  41. Richter, F.M., 1973, Dynamical models for sea floor spreading. Review of Geophysics, 11, 223-287. https://doi.org/10.1029/RG011i002p00223
  42. Riedel, M.R. and Karato, S.-I., 1997, Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth and Planetary Science Letters, 148, 27-43. https://doi.org/10.1016/S0012-821X(97)00016-2
  43. Ringwood, A.E. and Irifune, T., 1988, Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation. Nature, 331, 131-136. https://doi.org/10.1038/331131a0
  44. Ryu, I.-C., Choi, S.G. and Wee, S.M., 2006, An Inquiry into the Formation and Deformation of the Cretaceous Gyeongsang (Kyongsang) Basin, Southeastern Korea. Economic and Environmental Geology, 39, 129-149.
  45. Sagong, H., Kwon, S.-T. and Ree, J.-H., 2005, Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, TC5002.
  46. Schellart, W.P., Freeman, J., Stegman, D.R., Moresi, L. and May, D., 2007, Evolution and diversity of subduction zones controlled by slab width. Nature, 446, 308-311. https://doi.org/10.1038/nature05615
  47. Schmid, C., Goes, S., van der Lee, S. and Giardini, D., 2002, Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth and Planetary Science Letters, 204, 17-32. https://doi.org/10.1016/S0012-821X(02)00985-8
  48. Sdrolias, M. and Muller, R.D., 2006, Controls on back-arc basin formation. Geochemistry Geophysics Geosystems, 7.
  49. Stein, C.A. and Stein, S., 1992, A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123-129. https://doi.org/10.1038/359123a0
  50. Stern, R.J., 2002, Subduction zones. Review of Geophysics, 40, 1012. https://doi.org/10.1029/2001RG000108
  51. Tackley, P.J., 1995, Mantle dynamics - influence of the transition zone. Reviews of Geophysics, 33, 275-282. https://doi.org/10.1029/95RG00291
  52. Tackley, P.J., 2000, Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. Geochemistry, Geophysics, Geosystems, 1.
  53. Taylor, G.I., 1968, Instability of jets, threads, and sheets of viscous fluid. Proc. Twelfth Int. Cong. Appl. Mech. Springer Verlag, Berlin.
  54. Tome, M.F. and McKee, S., 1999, Numerical simulation of viscous flow: Buckling of planar jets. International Journal for Numerical Methods in Fluids, 29, 705-718. https://doi.org/10.1002/(SICI)1097-0363(19990330)29:6<705::AID-FLD809>3.0.CO;2-C
  55. van Keken, P.E., 2003, The structure and dynamics of the mantle wedge. Earth and Planetary Science Letters, 215, 323-338. https://doi.org/10.1016/S0012-821X(03)00460-6

Cited by

  1. Numerical or analog modeling study vol.54, pp.6, 2018, https://doi.org/10.14770/jgsk.2018.54.6.585