• 제목/요약/키워드: slab deflection

검색결과 220건 처리시간 0.027초

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

줄눈콘크리트 포장의 구조적 형상이 AREA법을 이용한 역해석에 미치는 영향 (Effect of Structural Geometry of Jointed Concrete Pavement on Backcalculation using AREA Method)

  • 유태석;심종성
    • 한국도로학회논문집
    • /
    • 제9권1호
    • /
    • pp.39-46
    • /
    • 2007
  • 동일한 물성을 가지는 포장이라도 포장의 구조적인 형상에 따라 역해석 결과가 다르게 나타난다. 본 논문에서는, 구조적인 형상을 고정하고 동적 하중을 모사하는 3차원 유한요소모델을 만들어 얻어진 최대 처짐과 AREA의 분포를 통해서 물성을 추정하는 수정된 AREA 도표를 제안하였다. 제안된 도표를 이용하여 단일 무한 슬래브에 대한 민감도 분석 결과 노상의 깊이가 질어지면 처짐과 AREA가 증가하는 것으로 나타났고 4.0m이상에서는 큰 차이를 나타내지 않았다. 층별 물성과 노상 깊이가 같은 경우 단일 무한 슬래브 모델과 다중 유한 슬래브 모델을 비교하는 경우 다중 유한 슬래브 모델의 처짐과 AREA가 더 크게 나타났다.

  • PDF

Minimum thickness of flat plates considering construction load effect

  • Hwang, Hyeon-Jong;Ma, Gao;Kim, Chang-Soo
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.1-10
    • /
    • 2019
  • In the construction of flat plate slabs, which are widely used for tall buildings but have relatively low flexural stiffness, serviceability problems such as excessive deflections and cracks are of great concern. To prevent excessive deflections at service load levels, current design codes require the minimum slab thickness, but the requirement could be unconservative because it is independent on loading and elastic modulus of concrete, both of which have significant effects on slab deflections. In the present study, to investigate the effects of the construction load of shored slabs, reduced flexural stiffness and moment distribution of early-age slabs, and creep and shrinkage of concrete on immediate and time-dependent deflections, numerical analysis was performed using the previously developed numerical models. A parametric study was performed for various design and construction conditions of practical ranges, and a new minimum permissible thickness of flat plate slabs was proposed satisfying the serviceability requirement for deflection. The proposed minimum slab thickness was compared with current design code provisions and numerical analysis results, and it agreed well with the numerical analysis results.

포장강성을 고려한 콘크리트 포장하부 공동유무 평가방법 (A Method for Evaluation of Hollow Existence in Sublayers of Concrete Pavement Considering Pavement Stiffness)

  • 손덕수;이재훈;정호성;박주영;정진훈
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.95-102
    • /
    • 2013
  • PURPOSES: The existing method evaluating the existence of the hollows in concrete pavement does not consider the stiffness of pavement. In addition, the method uses unreasonable logic judging the hollow existence by the deflection caused by zero loading. In this study, the deflection of slab corner due to heavy weight deflectometer (HWD) was measured in concrete pavement sections where underground structures are located causing the hollows around them. METHODS: The modulus of subgrade reaction obtained by comparing the actual deflection of slab to the result of finite element analysis was calibrated into the composite modulus of subgrade reaction. The radius of relative stiffness was calculated, and the relationship between the ratio of HWD load to the radius of relative stiffness and the slab deflection was expressed as the curve of secondary degree. RESULTS: The trends of the model coefficients showing width and maximum value of the curve of secondary degree were analyzed by categorizing the pavement sections into three groups : hollows exist, additional investigation is necessary, and hollows do not exist. CONCLUSIONS: The results analyzed by the method developed in this study was compared to the results analyzed by existing method. The model developed in this study will be verified by analyzing the data obtained in other sections with different pavement structure and materials.

Reshoring effects on deflections of multi-shored flat plate systems under construction

  • Kang, Su-Min;Eom, Tae-Sung;Kim, Jae-Yo
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.455-470
    • /
    • 2013
  • RC flat plates that have no flexural stiffness by boundary beams may be governed by a serviceability as well as a strength condition. A construction sequence and its impact on the distributions of construction loads among slabs tied by shores are decisive factors influencing immediate and long term performances of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction. A reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of construction loads in a multi-shored flat plate system. In this study, a change of construction loads by reshoring works and its effects on deflections of flat plate systems under construction are analyzed. The slab construction loads with various reshoring schemes are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking effects is applied. From parametric studies, the reshoring works are verified to reduce construction loads and slab deflections.

Load-deflection analysis prediction of CFRP strengthened RC slab using RNN

  • Razavi, S.V.;Jumaat, Mohad Zamin;El-Shafie, Ahmed H.;Ronagh, Hamid Reza
    • Advances in concrete construction
    • /
    • 제3권2호
    • /
    • pp.91-102
    • /
    • 2015
  • In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) strengthened Reinforced Concrete (RC) slab using Recurrent Neural Network (RNN) is investigated. Six reinforced concrete slabs having dimension $1800{\times}400{\times}120mm$ with similar steel bar of 2T10 and strengthened using different length and width of CFRP were tested and compared with similar samples without CFRP. The experimental load-deflection results were normalized and then uploaded in MATLAB software. Loading, CFRP length and width were as neurons in input layer and mid-span deflection was as neuron in output layer. The network was generated using feed-forward network and a internal nonlinear condition space model to memorize the input data while training process. From 122 load-deflection data, 111 data utilized for network generation and 11 data for the network testing. The results of model on the testing stage showed that the generated RNN predicted the load-deflection analysis of the slabs in acceptable technique with a correlation of determination of 0.99. The ratio between predicted deflection by RNN and experimental output was in the range of 0.99 to 1.11.

반복하중을 받는 모듈러 슬래브의 거동 및 단면2차모멘트 평가 (Evaluation of Structural Behavior and Moment of Inertia on Modular Slabs Subjected to Cyclic Loading)

  • 박종호;최진웅;이홍명;박선규;홍성남
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권6호
    • /
    • pp.95-102
    • /
    • 2015
  • 최근 교량의 노후화에 따른 유지관리 활동이 교통체증, 환경오염, 막대한 비용의 소모로 인하여 어려움을 겪으면서 조립식교량 공법을 이용하는 모듈러 교량 연구가 진행 중이다. 본 연구는 모듈러 교량과 관련된 연구의 일환으로 연결부를 가지는 1방향 모듈러 슬래브를 대상으로 반복하중 재하시 단면2차모멘트의 변화를 분석하고 콘크리트구조기준의 유효단면2차모멘트 식과 비교하였다. 반복하중 재하 실험을 위하여 일체형, 모듈러 실험체 각각 1개씩을 제작하였다. 실험결과, 모듈러 실험체는 일체형 실험체의 비슷한 휨 성능을 가지고 있었으나, 극한 변위는 20% 부족한 모습을 보였다. 반복하중 재하 실험에서는 모듈러 실험체는 일체형 실험체와는 상이한 처짐 거동을 보였고 단면2차모멘트의 변화가 상이하였다. 또한 콘크리트구조기준의 유효단면2차모멘트 계산식은 모듈러 슬래브의 단면2차모멘트를 적절히 반영하지 못하고 있음을 확인하였고, 실험값을 기반으로 하중과 균열모멘트의 비율을 새로운 값인 4.53을 구하였다.

보-거더 시스템 슬래브에서 지지부 처짐영향에 관한 연구 (Support Deflection Effects in Slabs with Beam and Girder)

  • 곽효경;송종영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.55-62
    • /
    • 1997
  • The support deflection effects in slabs with beams and girders are reviewed for both cases of the uniformly distributed and concentrated wheel loads. The differences in structural behavior according to the variation of support stiffness namely, the moment of inertia of beam and gilder, and the slab thickness, are calculated using the finite element method. Besides. the correction factors which can consider the support deflection effects in slab design are proposed by regression based on the obtained numerical results. Through the comparision studies of slabs with different boundary conditions, the importance for the consideration of support deflection effects in design are emphasized.

  • PDF

강섬유보강 철근콘크리트 슬래브의 휨 거동에 관한 실험적 연구 (An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Concrete Slab)

  • 박홍용;문정규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.861-866
    • /
    • 2000
  • This experimental were investigated on the influence of steel fiber reinforcement on flexural behavior characteristics of slabs with various steel fiber contents $V_f$ and aspect ratio($\ell $/$\phi$). Deflection, crack widths, and strains of steel bar were measured with every load step. In the results of this experimental, the addition of steel fibers to conventionally reinforced concrete slab increased the ultimate load, reduced the creak width, the average crack spacing, and deflection.

플랫 플레이트의 장단기 처짐에 대한 중공 슬래브의 자중저감 효과 분석 (Analysis of Weight Reduction Effect of Void Slab on Long and Short Term Deflections of Flat Plates)

  • 김재요
    • 한국전산구조공학회논문집
    • /
    • 제30권4호
    • /
    • pp.343-350
    • /
    • 2017
  • RC 플랫 플레이트 시스템은 공기단축, 시공성 향상, 층고 절감 등의 장점이 있으나, 장스팬 적용 시 슬래브의 작은 휨강성으로 인해 균열 손상 및 과다 처짐이 발생하는 경향이 있다. 특히, 시공 중 슬래브 자중에 의한 과하중의 작용이 슬래브의 장단기 처짐을 증가시킬 수 있다. 이러한 문제점은 자중 저감이라는 장점을 갖고 있는 중공 슬래의 사용을 통해 해결할 수 있다. 이 연구에서는 슬래브 처짐에 대한 중공 슬래브의 자중저감 효과를 분석하기 위하여 변수연구를 수행한다. 콘크리트 강도, 슬래브 시공주기, 동바리 지지층수, 압축철근비, 인장철근비 등의 변수조건들을 포함하여, 시공단계, 콘크리트 균열, 장기 효과를 고려한 시공하중 및 처짐을 산정한다. 일반 슬래브와 중공 슬래브에 대한 시공 중 단기처짐과 완공 후 장기처짐을 비교하고, 슬래브 처짐에 대한 중공 슬래브의 효과를 분석한다.