• 제목/요약/키워드: slab buckling

검색결과 34건 처리시간 0.02초

상전이가 섭입 슬랩의 좌굴에 미치는 영향과 지체구조적 암시 (Effect of phase transformations on buckling behavior of subducting slab and tectonic implication)

  • 이창열
    • 지질학회지
    • /
    • 제54권6호
    • /
    • pp.657-675
    • /
    • 2018
  • 하부 맨틀의 상부에서 관찰되는 섭입된 해양판의 겉보기 두꺼워짐은 과거 연구를 통해 슬랩 좌굴에 의한 것으로 제안되었다. 그러나, 맨틀의 상전이가 슬랩 좌굴에 미치는 영향을 정량적으로 평가하고 이를 규모 법칙으로 검증한 연구는 거의 이루어지지 못하였다. 이 연구에서는 상전이를 고려한 2차원 컴퓨터 섭입 모델링을 수행하여 상전이가 슬랩 좌굴에 미치는 영향에 대해 정량적으로 평가하고 규모 법칙으로 검증하였다. 실험 결과는 410 km 깊이에서 발생하는 감람석-와드슬레이아이트 상전이가 슬랩 좌굴의 발달에 중요한 영향을 미친다는 것을 보였다. 흡열 상전이는 상부 맨틀에서 섭입 슬랩의 침강을 가속시켜 660 km 깊이에 존재하는 불연속면에 빠르게 도달하게 한다. 그러나 660 km 깊이에 존재하는 링우다이트-페로브스카이트+마그네시오우스타이트 상전이는 슬랩 좌굴의 발달에 상대적으로 작은 영향을 미치는데 그 상전이가 섭입 슬랩의 하부 맨틀 침강을 지연시켜 전이대에 섭입한 슬랩을 누적시키기 때문이다. 그럼에도 불구하고 슬랩 좌굴은 규모 법칙을 20% 이내의 오차에서 잘 만족한다. 이처럼 슬랩 좌굴은 맨틀에서 발생하는 보편적인 현상으로써 자바-순다 및 동북 일본 섭입대에서 관찰되는 하부 맨틀의 상부와 전이대에서의 슬랩 좌굴을 잘 설명한다. 또한 백악기 시기 경상 분지가 겪은 주기적인 압축 및 인장이 슬랩 좌굴에 의한 가능성을 암시한다.

파이프서포트(V6)의 좌굴특성에 관한 연구 (A Study on the Buckling Characteristics of Pipe Support(V6))

  • 백신원;송인용
    • 한국안전학회지
    • /
    • 제26권3호
    • /
    • pp.59-62
    • /
    • 2011
  • Among the accidents and failures that occur during concrete construction, many are formwork failures which usually happen when concrete is being placed. A system of formwork filled with wet concrete has its weight at the top and is not basically a stable structure. Slab formwork consists of sheathing, stringer, hanger and shore. There are several types of adjustable shores. In construction site, pipe supports are usually used as a shore of slab formwork. In this study, pipe support systems with/without horizontal connector were measured by buckling test. Buckling load of respective pipe support system was analyzed by structural analysis program(MIDAS). Buckling load of pipe support with/without horizontal connector was got by test and structural analysis. According to these results, we know that horizontal connector made pipe support system very safe. Buckling load of pipe support with horizontal connector is 56% higher than that without horizontal connector. So horizontal connector is important in slab formwork systems. Finally, the present study results will be used to design slab formwork system safely in the construction sites.

구조해석에 의한 파이프서포트의 내력비교에 관한 연구 (A Study on the Strength Comparison of Steel Pipe Support using the Structural Analysis Program)

  • 백신원;박종근
    • 한국안전학회지
    • /
    • 제23권4호
    • /
    • pp.67-71
    • /
    • 2008
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Slab formwork consists of sheathing, stringer, hanger and shore. In construction site, pipe supports are usually used as shores which are consisted of the slab formwork. In this study, compressive strength of 80 pipe supports was measured by knife edge test and plate test. Buckling load of pipe supports was analyzed by structural analysis program(MlDAS). Theoretical buckling load with/without initial deformation was got by theoretical analysis. According to these results, buckling load which was analyzed by structural analysis program(MlDAS) was larger than compressive strength of knife edge test and plate test. Theoretical buckling load without initial deformation was larger than compressive strength of knife edge test and plate test. But Theoretical buckling load with initial deformation was lower than compressive strength of knife edge test and plate test. Initial deformation equation for test method according to the pipe support length was suggested. Therefore, the present study results will be used to design the slab formwork safely.

An analytical solution for buckling failure of rock slopes based on elastoplastic slab theory

  • Zhihong Zhang;Pengyu Wu;Fuchu Dai;Renjiang Li;Xiaoming Zhao;Shu Jiang
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2024
  • Buckling failure is one of the classical types of catastrophic landslides developing on inclination-paralleled rock slopes, which is mainly governed by its self-weight, earthquake and ground water. However, nearly none of the existing studies fully consider the influence of slope self-weight, earthquake and ground water on the mechanical model of buckling failure. In this paper, based on energy equilibrium principle and elastoplastic slab theory, a thorough mechanical analysis on bucking slopes has been carried out. Furthermore, an analytical solution for slip bucking failure of rock slopes has been proposed, which fully considers the effect of slope self-weight, seismic force and hydrostatic pressure. Finally, the methodology is used to conduct comparative analysis with other analytical solutions for three practical buckling studies. The results show that the proposed approach is capable of providing a more accurate and reasonable evaluation for stability of rock slopes with potential buckling failure.

A design approach of integral-abutment steel girder bridges for maintenance

  • Kim, WooSeok;Jeong, Yoseok;Lee, Jaeha
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.227-239
    • /
    • 2018
  • Integral abutment bridges (IABs) have no joint across the length of bridge and are therefore also known as jointless bridges. IABs have many advantages, such as structural integrity, efficiency, and stability. More importantly, IABs have proven to be have both low maintenance and construction costs. However, due to the restraints at both ends of the girder due to the absence of a gap (joint), special design considerations are required. For example, while replacing the deck slabs to extend the service life of the IAB, the buckling strength of the steel girder without a deck slab could be much smaller than the case with deck slab in place. With no deck slab, the addition of thermal expansion in the steel girders generates passive earth pressure from the abutment and if the applied axial force is greater than the buckling strength of the steel girders, buckling failure can occur. In this study, numerical simulations were performed to estimate the buckling strength of typical steel girders in IABs. The effects of girder length, the width of flange and thickness of flange, imperfection due to fabrication and construction errors on the buckling strengths of multiple and single girders in IABs are studied. The effect of girder spacing, span length ratio (for a three span girder) and self-weight effects on the buckling strength are also studied. For estimation of the reaction force of the abutment generated by the passive earth pressure of the soil, BA 42/96 (2003), PennDOT DM4 (2015) and the LTI proposed equations (2009) were used and the results obtained are compared with the buckling strength of the steel girders. Using the selected design equations and the results obtained from the numerical analysis, equations for preventing the buckling failure of steel girders during deck replacement for maintenance are presented.

Buckling of post-tensioned composite beams

  • Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.113-123
    • /
    • 1994
  • A method for computing the elastic buckling prestressing force of a post-tensioned composite steel-concrete tee-beam is presented. The method is based on a virtual work formulation, and incorporates the restraint provided by the concrete slab to the buckling displacements of the steel beam. The distortional buckling solutions are shown to be given by a quadratic equation. The application of the analysis to calculation buckling strengths is given, based on codified rules for beam-columns. Conclusions are then drawn on the importance of distortional buckling when a post-tensioned composite beam is stressed during jacking.

고속철도 적용을 위한 콘크리트 도상 분기기 개발 및 부설 (Construction and Development of Turnout on concrete roadbed applicable to high speed railway)

  • 박춘복;권호진;전세곤;윤병현;오수진;최용석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1223-1228
    • /
    • 2007
  • Since KHSL 2nd phase was adapted as a main track design, the interests of concrete slab track system have been gradually increased in the division of rail track engineering and many engineering companies have been trying to adapt a concrete slab track system at this moment. Advantages of this system proved in advanced country, japan and Germany etc. are excellent maintenance, track stability and increasing of buckling resistance This developed turnout is same with the KHSR 1st phase's design and applications rules, components and signaling system since it observes KTX specification. Comparing it with the former turnout, High-elasticity pad, lubrication-free roller slide plate and Rheda2000 PC sleeper are only different. The purpose of this study is the development of high speed turnout on concrete slab track and its application on site. Now these studies are going to show the verification and confidence about the interface between ballast-track and concrete slab track by finding and solving the possible problems when it is installed on site and to make these turnouts applied perfectly and completely on concrete slab track. Its first trial construction in korea had been successfully completed at Sangju-station on July 20th ,2007 thanks to KORAIL and KR. Hereunder Sampyo E&C trys to introduce all of turnout technologies on concrete slab track system with Rheda 2000 sleeper

  • PDF

Cracking and bending strength evaluations of steel-concrete double composite girder under negative bending action

  • Xu, Chen;Zhang, Boyu;Liu, Siwei;Su, Qingtian
    • Steel and Composite Structures
    • /
    • 제35권3호
    • /
    • pp.371-384
    • /
    • 2020
  • The steel-concrete double composite girder in the negative flexural region combines an additional concrete slab to the steel bottom flange to prevent the local steel buckling, however, the additional concrete slab may lower down the neutral axis of the composite section, which is a sensitive factor to the tensile stress restraint on the concrete deck. This is actually of great importance to the structural rationality and durability, but has not been investigated in detail yet. In this case, a series of 5.5 m-long composite girder specimens were tested by negative bending, among which the bottom slab configuration and the longitudinal reinforcement ratio in the concrete deck were the parameters. Furthermore, an analytical study concerning about the influence of bottom concrete slab thickness on the cracking and sectional bending-carrying capacity were carried out. The test results showed that the additional concrete at the bottom improved the composite sectional bending stiffness and bending-carrying capacity, whereas its effect on the concrete crack distribution was not obvious. According to the analytical study, the additional concrete slab at the bottom with an equivalent thickness to the concrete deck slab may provide the best contributions to the improvements of crack initiation bending moment and the sectional bending-carrying capacity. This can be applied for the design practice.

Elastic distortional buckling of tapered composite beams

  • Bradford, M.A.;Ronagh, H.R.
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.269-281
    • /
    • 1997
  • The overall buckling mode in a composite steel-concrete beam over an internal support is necessarily lateral-distortional, in which the bottom compressive range displaces laterally and twists, since the top flange is restrained by the nearly rigid concrete slab. An efficient finite element method is used to study elastic lateral-distortional buckling in composite beams whose steel portion is tapered. The simplified model for a continuous beam that is presented herein is a fixed ended cantilever whose steel portion is tapered, and is subjected to moment gradient. This is intended to give an insight into distortion in a continuous beam that occurs in the negative bending region, and the differences between the cantilever representation and the continuous beam are highlighted. An eigenproblem is established, and the buckling modes and loads are determined in the elastic range of structural response. It is found from the finite element study that the buckling moment may be enhanced significantly by using a vertical stiffener in the region where the lateral movement of the bottom range is greatest. This enhancement is quantified in the paper.

강합성 박스거더 복부판의 탄성전단강도 연구 (Elastic Shear Buckling Strength of Steel Composite Box Girder Web Panel)

  • 김대혁;한상윤;김정훈;강영종
    • 복합신소재구조학회 논문집
    • /
    • 제4권3호
    • /
    • pp.30-37
    • /
    • 2013
  • It is same such as the provision of shear buckling strength of steel composite box girder web panel and plate girder web panel in Korea Highway Bridge Design Standards(2012). But the web panel of steel composite box girder is different from the web of plate girder in that the upper slab and lower flange are connected to the web. So a different shear behavior of the girders is expected. In this study, To calculate a reasonable elastic shear buckling strength of steel composite box girder web panel, ABAQUS program was used. The results from F.E.A and previous studies are compared. It is shown that the web shear buckling strength of steel composite box girder of Korea Highway Bridge Design Standards(2012) is the most conservative.