• Title/Summary/Keyword: sky condition

Search Result 130, Processing Time 0.023 seconds

Performance Evaluation of 6WD Military Vehicle Featuring MR Damper (MR댐퍼를 적용한 6WD 군용차량의 성능평가)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • This paper proposes a new type of MR(magnetorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is established by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the imposed vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

A Basic Study on Urban Radiation Heat Transfer (도시의 방사전열에 관한 기초 연구)

  • Kim, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.35-43
    • /
    • 2002
  • This research makes that quantitative radiation property of an actual town ward is obtained in quest of the parameter with regard to a radiation heat transfer property and set up several town ward models that reproduced a solid form of a city along the attribute of the city. A regular trend possibility that is able to evaluate a radiation characteristics of a town ward quantitatively from a town ward guideline and confirmation that is produced about each parameter as a result of a numerical value simulation it obtained. This research shot a coefficient of Gebhart's emission absorption. sky radiation absorption rate direct solar radiation absorption rate the parameter with regard to a radiation heat transfer characteristics of a town ward in each town ward model and a volume rate of a town ward advances case study under regular such condition and shot the absorption rate, direct and others days and calculated an absorption rate and checked about the relation between a town ward and each radiation heat transfer property of a city.

Analyzing Shading Characteristics of Venetian Blinds Using the RADIANCE Program (RADIANCE 프로그램을 이용한 베네치안 블라인드의 차양특성 분석)

  • Song, Kyoo-Dong;Kim, Min-Sung;Kim, Ji-Hyun
    • KIEAE Journal
    • /
    • v.5 no.3
    • /
    • pp.3-9
    • /
    • 2005
  • Venetian blinds are used with windows to improve the uniformity ratio of illuminance and interior daylighting distribution under direct sunlit conditions. The main objective of Venetian blinds shading system is to obstruct direct sunlight and at the same time allow daylight to penetrate into the room. Venetian blinds would have greater effect on the interior daylighting condition under clear sky which has both skylight and sunlight than overcast sky which has only skylight. However, due to the lack of data, design and evaluation tools, it is difficult for architects to choose or install venetian blinds during the building design stages. The purpose of this study was to develop an analysis method for shading and daylighting effects of Venetian blinds using the RADIANCE program. The major variables related to the venetian blinds included blinds's slat angle and the ratio of slat width to window height, the radius slat of curvature and the building azimuth. In this study, a series of parametric physical mock-up model measurements and genblinds command in the RADIANCE simulations. The results of this study will provide building designers with the design data at early design stages.

Sliding Mode Control for Improving Performance of Mount with MR(Magneto-Rheological) Fluid (MR마운트 진동제어 성능 향상을 위한 슬라이딩 모드 제어)

  • Ahn, Young Kong;Kim, Sung-Ha;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.18-25
    • /
    • 2017
  • This paper deals with vibration control of a small mount with MR(Magneto-Rheological) fluid as a functional fluid mount for precision equipment of automobiles. Damping and stiffness coefficients of the mount with MR fluid are changed by variations of the applied magnetic field strength. We present the robust control scheme, based on a conventional sliding mode control theory, for the design of a stable controller that is capable of vibration control due to various disturbances such as impact and periodic excitations, and is insensitive to dynamic properties of the mount. We got stable controller by using Lyapunov stability theory. The controller is then realized by using a semi-active control condition in simulations. Chattering problem of the sliding mode control is eliminated by saturation function instead of signum function. The sliding mode control with Lyapunov stability theory is superior to passive and Sky-Hook control in performance.

Analysis on Dimming Control Effect by Algorithm Variation for Direct/Indirect Lighting in a Small Office (알고리듬 변화에 따른 직/간접 조명시스템에 대한 디밍제어 효과분석)

  • Kim, Soo-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.36-48
    • /
    • 2008
  • This study examines the influence of control algorithms on dimming performance to determine appropriate control setting when direct/indirect lighting is controlled by a daylight dimming system. Computer simulation were performed for a small office with double skin envelope under various daylight conditions. A retractable fabric shading and Venetian blind were applied for internal and external envelopes under three CIE standard sky conditions. Unshielded and partially-shielded photosensors were used, and three control algorithms were applied for the sensors. In general, dimming level was too excessive due to the direct impact of light from lighting fixture to the photosensor. Providing insufficient lighting output, the unshielded photosensor completely failed to secure required illuminance under any daylight condition. When a partially-shielded photosensor was applied under clear sky, three setting points functioned effectively. Less sensitivity for the partially-shielded photosensor was effective to control the dimming system optimally with reasonable energy saving. However, the daylight dimming control system for direct/indirect lighting does not appear to be energy effective when photosensors without enough shielded area is installed on ceiling where light from fixtures reaches directly.

Assessment of Daylight Environment on Light Pipe System Under Different Solar Position (태양의 위치에 따른 광파이프 시스템의 실내 주광환경평가)

  • Shin, Hwa-Young;Kim, Jeong-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.78-86
    • /
    • 2008
  • The aim of this paper is to show the daylight environment of a light pipe system according to sun movement. A light pipe system has been mounted on the roof of the windowless full scale model: the solar spot has diameter of 0.65m and is 1.3m long, giving an aspect ratio of 1:2. The full scale model was installed on the rooftop of the SHINAN apartment in Yongin city that has no obstructions against sunlight. The test room is equipped with sensors for the measurements of the internal illuminance and has an area of 6m(W)$\times$6m(D)$\times$4m(H). The system has been monitored with a data-logger to evaluate the cumulative distribution of illuminance on a floor-plane from 16th, April to 29th, May, 2008 over one month and selected clear sky condition. For the daylight performance of floor area, the totally 49 measuring points has been used to determine the internal illuminance and an HP datalogger(HP34970A) records the measurements for one consecutive month. The horizontal external illuminance has been measured with two outdoor sensors. This paper presents the results of monitoring light pipe system with internal/external illuminance ratio and cumulative frequency distribution of floor-plane illuminance are discussed The results show that lightpipe is proficient device for introducing daylight into the building. However It provided different daylight indoor environment with wide or narrow Interquatile range of illuminance, internal/external illuminance ratio and cumulative frequency distribution according to solar positions under suuny sky condition. For more achieving the improvement of lightpipes also include energy savings, user visual comfort with various indicators; seasonal solar height, room and lightpipes geometries.

Experimental Study on Surface Temperature Variation Characteristics of Rectangular Parallelepipeds Constructed by Different Materials for Varying Meteorological Conditions (기상 상태 변화에 따른 직육면체의 재질별 표면온도 변화 특성에 대한 실험 연구)

  • Kim, Dong-Geon;Choi, Jun-Hyuk;Kil, Tae-Jun;Kim, Jung-Ho;Kim, Tae-Kuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.208-214
    • /
    • 2012
  • The spectral radiance received by a remote sensor is consisted of the self-emitted component directly from the target surface, the reflected component of the solar irradiance at the target surface, and the scattered component by the atmosphere without ever reaching the object surface. In general, the self-emitted component is the most important part in the infrared signatures from the target. We measured the solar irradiation, sky irradiation, air temperature, wind velocity, wind direction, relative humidity, and atmospheric pressure together with the surface temperatures of rectangular parallelepiped targets. The measured diurnal surface temperature variations on the three different rectangular parallelepiped targets constructed by the steel, aluminum and bakelite are obtained at the same time intervals. The measured surface temperature results show that the top surface temperature of bakelite recorded up tp $7.6^{\circ}C$ higher than that of aluminium and $6.1^{\circ}C$ higher than that of steel at 11 AM on the sunny condition. A complete set of measured data including the surface temperature of rectangular parallelepiped targets together with the detailed weather information can be a valuable reference for future study.

Observation of Spatial and temporal variability of sea skin surface temperature by a Thermal Infrared Camera

  • Tamba, Sumio;Yokoyama, Ryuzo;Parkes, Isabelle;David, Llewellyn-Jones
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.14-19
    • /
    • 1998
  • The MUBEX (MUtsu Bay sea surface temperature validation EXperiment) campaign has been held from 1995 to 1997 in summer. During the MUBEX campaign, a thermal infrared camera (TIC) installed on a research vessel, which was also equipped with other various observation devices, was intensively used to observe microscopic structure of sea skin surface temperature (SSST) behavior. We have now a total number of 500,000 images observed by the TIC under various weather conditions, i.e., very calm or wavy sea condition, and clear, patchy or cloudy sky condition. In this paper, we show typical SSST patterns observed by the TIC, and describe the result of statistical analysis of SSST.

  • PDF

PRELAUNCH THERMAL ANALYSIS OF KSLV-I PAYLOAD FAIRING

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.356-359
    • /
    • 2004
  • Prelaunch thermal analysis of the KSLV (Korea Space Launch Vehicle)-I PLF (Payload Fairing) was performed to predict maximum/minimum liftoff temperatures and to evaluate of air conditioning performance. Prelaunch thermal analysis includes internal air conditioning effect, external convective heating/cooling, radiation exchange with the ground and sky, radiation between spacecraft and PLF, and solar radiation incident on PLF. Analysis was performed at two extreme conditions, hot day condition and cold day condition. The results showed that the maximum liftoff temperature was $53^{\circ}C$ and the minimum liftoff temperature was $-3.8^{\circ}C$. It was also found that conditioned air supplying, in $20{\pm}2^{\circ}C\;and\;1200\;m^3/hr$, is sufficient to keep the internal air in required temperature range.

  • PDF

Adaptive Segmentation Approach to Extraction of Road and Sky Regions (도로와 하늘 영역 추출을 위한 적응적 분할 방법)

  • Park, Kyoung-Hwan;Nam, Kwang-Woo;Rhee, Yang-Won;Lee, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.105-115
    • /
    • 2011
  • In Vision-based Intelligent Transportation System(ITS) the segmentation of road region is a very basic functionality. Accordingly, in this paper, we propose a region segmentation method using adaptive pattern extraction technique to segment road regions and sky regions from original images. The proposed method consists of three steps; firstly we perform the initial segmentation using Mean Shift algorithm, the second step is the candidate region selection based on a static-pattern matching technique and the third is the region growing step based on a dynamic-pattern matching technique. The proposed method is able to get more reliable results than the classic region segmentation methods which are based on existing split and merge strategy. The reason for the better results is because we use adaptive patterns extracted from neighboring regions of the current segmented regions to measure the region homogeneity. To evaluate advantages of the proposed method, we compared our method with the classical pattern matching method using static-patterns. In the experiments, the proposed method was proved that the better performance of 8.12% was achieved when we used adaptive patterns instead of static-patterns. We expect that the proposed method can segment road and sky areas in the various road condition in stable, and take an important role in the vision-based ITS applications.