• Title/Summary/Keyword: skip intra mode

Search Result 18, Processing Time 0.025 seconds

Residual DPCM in HEVC Transform Skip Mode for Screen Content Coding

  • Han, Chan-Hee;Lee, Si-Woong;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.323-326
    • /
    • 2016
  • High Efficiency Video Coding (HEVC) adopts intra transform skip mode, in which a residual block is directly quantized in the pixel domain without transforming the block into the frequency domain. Intra transform skip mode provides a significant coding gain for screen content. However, when intra-prediction errors are not transformed, the errors are often correlated along the intra-prediction direction. This paper introduces a residual differential pulse code modulation (DPCM) method for the intra-predicted and transform-skipped blocks to remove redundancy. The proposed method performs pixel-by-pixel residual prediction along the intra-prediction direction to reduce the dynamic range of intra-prediction errors. Experimental results show that the transform skip mode's Bjøntegaard delta rate (BD-rate) is improved by 12.8% for vertically intra-predicted blocks. Overall, the proposed method shows an average 1.2% reduction in BD-rate, relative to HEVC, with negligible computational complexity.

A Fast Intra Skip Detection Algorithm for H.264/AVC Video Encoding

  • Kim, Byung-Gyu;Kim, Jong-Ho;Cho, Chang-Sik
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.721-731
    • /
    • 2006
  • A fast intra skip detection algorithm based on the ratedistortion (RD) cost for an inter frame (P-slices) is proposed for H.264/AVC video encoding. In the H.264/AVC coding standard, a robust rate-distortion optimization technique is used to select the best coding mode and reference frame for each macroblock (MB). There are three types of intra predictions according to profiles. These are $16{\times}16$ and $4{\times}4$ intra predictions for luminance and an $8{\times}8$ intra prediction for chroma. For the high profile, an $8{\times}8$ intra prediction has been added for luminance. The $4{\times}4$ prediction mode has 9 prediction directions with 4 directions for $16{\times}16$ and $8{\times}8$ luma, and $8{\times}8$ chrominance. In addition to the inter mode search procedure, an intra mode search causes a significant increase in the complexity and computational load for an inter frame. To reduce the computational load of the intra mode search at the inter frame, the RD costs of the neighborhood MBs for the current MB are used and we propose an adaptive thresholding scheme for the intra skip extraction. We verified the performance of the proposed scheme through comparative analysis of experimental results using joint model reference software. The overall encoding time was reduced up to 32% for the IPPP sequence type and 35% for the IBBPBBP sequence type.

  • PDF

Fast Coding Mode Decision for H.264 Video Coding (H.264 동영상 압축을 위한 고속 부호화 모드 결정 방법)

  • 이제윤;전병우
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.165-173
    • /
    • 2004
  • H.264 is the newest international video coding standard that provides high coding efficiency. A macroblock in H.264 has 7 different motion-compensation block sizes in the Inter mode, and several different prediction directions in the Intra mode. In order to achieve as highest coding efficiency as possible, H.264 reference model employs complex mode decision technique based on rate-distortion (RD) optimization which requires high computational complexity. In this paper, we propose two techniques -'early SKIP mode decision' and 'selective intra mode decision' - which can further reduce the computational complexity. Simulation results show that without considerable performance degradation, the proposed methods reduce encoding time by 30% on average and save the number of computing rate-distortion cost by 72%.

A Rough Mode Decision Algorithm for Transform Skip Mode in HEVC (HEVC의 Transform Skip Mode를 위한 Rough Mode Decision 알고리즘)

  • Kim, Youngjo;Kim, Jaeseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.104-113
    • /
    • 2014
  • The existing rough mode decision (RMD) algorithm, used in HEVC standard loses the coding efficiency and wastes encoding time when encoding using transform skip mode (TSM) because the RMD algorithm in HEVC uses a selection method that is designed for DCT, not for TSM. This paper proposes a new RMD algorithm for TSM in HEVC. Our proposed RMD algorithm enhances the coding efficiency by employing a new cost function to increase the probability of selecting the best intra prediction mode for TSM. In addition, it reduces the encoding time by skipping the encoding process of least feasible TSM based on a newly proposed threshold value. The experiment results show that the proposed method achieves coding gains of -0.3% for screen contents with a 10% reduction in encoding time compared to those of the HEVC standard.

Intra Prediction Information Skip using Analysis of Adjacent Pixels for H.264/AVC (인접 화소 성분 분석을 이용한 H.264/AVC에서의 Intra 예측 정보 생략)

  • Kim, Dae-Yeon;Kim, Dong-Kyun;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.271-279
    • /
    • 2009
  • The Moving Picture Experts Group (MPEG) and Video Coding Experts Group (VCEG) have developed a new standard that promises to outperform the earlier MPEG-4 and H.263 standards. The new standard is called H.264/AVC (Advanced Video Coding) and is published jointly as MPEG-4 Part 10 and ITU-T Recommendation H.264. In particular, the H.264/AVC intra prediction coding provides nine directional prediction modes for every $4{\times}4$ block in order to reduce spatial redundancies. In this paper, an ABS (Adaptive Bit Skip) mode is proposed. In order to achieve coding efficiency, the proposed method can remove the mode bits to represent the prediction mode by using the similarity of adjacent pixels. Experimental results show that the proposed method achieves the PSNR gain of about 0.2 dB in R-D curve and reduces the bit rates about 3.6% compared with H.264/AVC.

Voting-based Intra Mode Bit Skip Using Pixel Information in Neighbor Blocks (이웃한 블록 내 화소 정보를 이용한 투표 결정 기반의 인트라 예측 모드 부호화 생략 방법)

  • Kim, Ji-Eon;Cho, Hye-Jeong;Jeong, Se-Yoon;Lee, Jin-Ho;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.498-512
    • /
    • 2010
  • Intra coding is an indispensable coding tool since it can provide random accessibility as well as error resiliency. However, it is the problem that intra coding has relatively low coding efficiency compared with inter coding in the area of video coding. Even though H.264/AVC has significantly improved the intra coding performance compared with previous video standards, H.264/AVC encoder complexity is significantly increased, which is not suitable for low bit rate interactive services. In this paper, a Voting-based Intra Mode Bit Skip (V-IMBS) scheme is proposed to improve coding efficiency as well as to reduce encoding time complexity using decoder-side prediction. In case that the decoder can determine the same prediction mode as what is chosen by the encoder, the encoder does not send that intra prediction mode; otherwise, the conventional H.264/AVC intra coding is performed. Simulation results reveal a performance increase up to 4.44% overall rate savings and 0.24 dB in peak signal-to-noise ratio while the frame encoding speed of proposed method is about 42.8% better than that of H.264/AVC.

Transform Skip Mode Decision and Signaling Method for HEVC Screen Content Coding (HEVC 스크린 콘텐츠의 고속 변환 생략 결정 및 변환 생략 시그널링 방법)

  • Lee, Dahee;Yang, Seungha;Shim, HiukJae;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.130-136
    • /
    • 2016
  • HEVC (High Efficiency Video Coding) extension considers screen content as one of its main candidate sources for encoding. Among the tools already included in HEVC version 1, the technique of using transform skip mode allows transform to be skipped and to perform quantization process only. It is known to improve video coding efficiency for screen contents which are characterized to have much high frequency energy. But encoding complexity increases since its encoder should decide whether transform should be used or not in each $4{\times}4$ transform block. Based on statistical correlation between IBC (Intra block copy) and transform skip modes both of which are known effective in screen contents, this paper proposes a combined method of the fast transform skip mode decision and a modified transform skip signaling which signals transform_skip_flag at CU level as a representative transform skip signal. By simulation, the proposed method is shown to reduce encoding time of $4{\times}4$ transform blocks by about 32%.

A Fast Macroblock Mode Decision Method using PSNR Prediction for H.264/AVC (H.264/AVC에서 PSNR 예측을 이용한 고속 매크로블록 모드 결정 방법)

  • Park, Sung-Jae;Myung, Jin-Su;Sim, Dong-Gyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-151
    • /
    • 2008
  • H.264/AVC is showed high coding efficiency more than previous video coding standard by using new coding tools. Specially, Variable block-based motion estimation and Rate-Distortion Optimization are very important coding tools in H.264/AVC. These coding tools have high coding efficiency, however the encoder complexity greatly increase due to these coding tools. In this paper, we propose early SKIP mode decision and selective inter/intra mode decision to reduce the computational complexity. Simulation results show that the proposed method could reduce encoding time of the overall sequences by 30% on average than JM 10.2 without noticeable degradation of coding efficiency. Besides, the proposed method runs over twice as fast as the previous proposed Fast Coding Mode Selection method (FCMS)[5].

Adaptive Coding Mode Decision Algorithm using Motion Vector Map in H.264/AVC Video Coding (H.264/AVC 부호기에서 움직임 벡터 맵을 이용한 적응적인 부호화 모드 결정 방법)

  • Kim, Tae-Jung;Ko, Man-Geun;Suh, Jae-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.48-56
    • /
    • 2009
  • We propose a fast intra mode skip decision algorithm for H.264/AVC video encoding. Although newly added MB encoding algorithms based on various prediction methods increase compression ratio, they require a significant increase in the computational complexity because we calculate rate-distortion(RD) cost for all possible MB coding modes and then choose the best one. In this paper, we propose a fast mode decision algorithm based on an adaptive motion vector map(AMVM) method for H.264/AVC video encoding to reduce the processing time for the inter frame. We verify that the proposed algorithm generates generally good performances in PSNR, bit rates, and processing time.

H.264/AVC Fast Macroblock Mode Decision Algorithm (H.264/AVC 고속 매크로블록 모드 결정 알고리즘)

  • Kim, Ji-Woong;Kim, Yong-Kwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.8-16
    • /
    • 2007
  • For the improvement of coding efficiency, the H.264/AVC video coding standard employs new coding tools compared with existing coding standards. However, due to these new coding tools, the complexity of K264/AVC standard encoder is greatly increased. Specifically, the inter/intra mode decision method using RDO(rate-distortion optimization) technique is one of the most complex parts in H.264/AVC. In this paper, we focus on the complexity reduction in macroblock mode decision. In the proposed method, we reduce the complexity of the $4{\times}4$ mode decision process using $4{\times}4$ simple square filters, and using spatial block correlation method. Additionally, exploiting the best mode of sub_macroblock in $Inter8{\times}8$ mode, we proposed an algorithm to eliminate some intra modes in current macroblock mode decision process. In addition, we employed a method to raise the probability to select SKIP, $Intra16{\times}16$, and $Intra16{\times}16$ modes which usually show low complexity and low bitrate compared with other modes. From the simulation results, the proposed algorithm reduce the encoding time by maximum 83% of total, and reduce the bitrate of the overall sequences by $8{\sim}10%$ on the average compared with existing coding methods.