• Title/Summary/Keyword: skin tissues

Search Result 484, Processing Time 0.032 seconds

Overexpression of KAI1 Protein in Diabetic Skin Tissues

  • Cho, Moon Kyun;Kwon, Sun Bum;Kim, Chul Han;Lee, Yoon-Jin;Nam, Hae-Seon;Lee, Sang-Han
    • Archives of Plastic Surgery
    • /
    • v.41 no.3
    • /
    • pp.248-252
    • /
    • 2014
  • Background Patients with diabetes mellitus often have a difficult life, suffering from foot ulceration or amputation. Diabetes is characterized by chronic inflammation, and one of the features of inflammation is hypoxia. Recently, it has been reported that KAI1 is a hypoxia target gene. There is no published research on hypoxia-related KAI1 protein levels in human diabetic skin. Therefore, we have investigated the expression of KAI1 protein in diabetic skin tissue in vivo. Methods The expression of KAI1 protein was evaluated by western blotting in 6 diabetic skin tissue samples and 6 normal skin samples. Immunohistochemical staining was carried out to identify KAI1 expression. Results The western blotting revealed significantly increased expression of the KAI1 protein in diabetic skin tissues as compared to normal skin tissues. Immunohistochemical examination demonstrated that KAI1 was expressed in all diabetic skin tissues with moderate-to-strong positivity and weakly expressed in normal skin tissues. Conclusions Our data suggest that a high expression of the KAI1 protein can be observed in diabetic skin tissue. To the best of our knowledge, this is the first report suggesting that KAI1 protein expression in diabetic skin tissues may be associated with chronic inflammatory states and hypoxia.

Body Distribution of $^{125}I-rhEGF$ Across Normal and Damaged Rat Skins (정상 및 손상된 흰쥐 피부에 국소 적용된 $^{125}I-rhEGF$의 체내 이행)

  • Lee, Jeong-Uk;Chung, Suk-Jae;Lee, Min-Hwa;Shim, Chang-Koo
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.730-736
    • /
    • 1997
  • Distribution of radioactivity in the skin tissues, subcutaneous tissues, blood and body organs was examined following topical application of $^{125}I-rhEGF$(0.4 ${\mu}Ci$), in the form of a Pluronic F-127 gel, on the normal and damaged (burned and stripped) skins of SD male rats. The radioactivity in the skin tissues and subcutaneous tissues was 3-5 times higher for the damaged skins than for the normal skin. But pretreatment of the skin with rhEGF (1${\mu}g$)) twice at 24 hr dose intervals affected the distribution of the radioactivity yielding the order of burned skin> stripped skin=normal skin. The decrease for the stripped skin by the pretreatment might be related either to the pathophysiological change of the skin or to the down regulation of the EGF receptor. Liver showed the highest radioactivity in amount following single and multiple administration of the drug to the normal and damaged skins. But,in concentration, the kidney and stomach showed higher value than the liver which is consistent with that kidney is a major eliminating organ of EGF and that EGF exerts its pharmacological effect specifically for the stomach.

  • PDF

Adverse Effects of Kerosene Cleaning on the Formation of DNA Adducts in Skin and Lung of Mice Dermally Exposed to Used Gasoline Engine Oil (피부에 폭로된 폐가솔린엔진오일의 표적장기 DNA adducts형성과 케로신의 세척효과에 관한 연구)

  • Lee, Jin Heon;Talaska, Glenn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.289-295
    • /
    • 1998
  • Used gasoline engine oils(UGEO) are carcinogenic in long term studies and capable of increasing the number of carcinogen-DNA adducts in short term studies when dermally applied to mice. The carcinogenic risk of UGEO has been attributed to the concentration of polycyclic aromatic hydrocarbons(PAH) which accumulate in the lubricating system during the combustion of gasoline. When dermally exposed to UGEO, the use of hand cleanser was commonly recommended for removing it. But generally workers who dermally exposed oils, use kerosene as cleaner which make skin trouble. During this study, female mice aged 4-6 weeks were utilized to evaluate the efficiency of kerosene, as solvent-based cleanser, following dermal exposure to UGEO. DNA adduct were detected at skin and lung tissues by using the $^{32}P$-postlabeling method. Washing with cleansers were done at two different interval times following dermal application of UGEO. The total DNA adducts in skin and lung tissues were statistically significantly increased in positive control groups, and of which the total adduct level in skin tissues was statistically significant higher than those in lung tissues(p=0.005). When washing kerosene, the DNA adduct level in skin tissues was statistically significantly decreased(p=0.0001). But DNA adducts in lung tissue was statistically increased(p=0.0039), and that washed at 8hr post exposure was more severly increase(p<0.05). The slope of regression between DNA adducts of lung between skin tissues was 1.0802. In conclusion, skin cleaning with kerosene facilitates passage of carcinogens to the lungs of animals dermally treated with used gasoline engine oils(UGEO).

  • PDF

Qualitative Analysis of the Free Amino Acids in Gallula tornieri Tissues (맹꽁이 조직내 유리 아미노산의 정성적 분석)

  • 하두봉;이양림
    • The Korean Journal of Zoology
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 1961
  • The present work deals with the patterns of the free amino acids in several tissues of Gallula tornieri VOGT analysed by means of paper chromatography and ion-exchange resins. The tissues used were heart, stomach , muscle, brain , testis , skin , and liver. 14 amino acid was detected in heart, 11 in muscle , 15 in stomach , 9 , in brain , 10 in skin in liver , and 10 in testis. It was found that there were distinguishable differences in the patterns of the free amino acids among the different tissues.

  • PDF

In vitro Skin Irritation Test of Honeypolis using Human Skin Model

  • Woo, SoonOk;Han, Sangmi;Hong, Inpyo;Kim, Sung-kuk
    • Journal of Apiculture
    • /
    • v.33 no.4
    • /
    • pp.277-282
    • /
    • 2018
  • Ethanol extracted propolis (EEP) was mixed with honey (honeypolis) to dissolve well in water and in vitro skin irritation test was conducted. In vitro method is designed to predict and classify the skin irritation potential of a chemical by assessment of its effect on $EpiDerm^{TM}$, a reconstituted three-dimensional human epidermis model. Cytotoxicity is expressed as the reduction of mitochondrial dehydrogenase activity measured by formazan production from MTT after a 60 min exposure period. In this study under the given conditions honeypolis showed no irritant effects. Honeypolis meets acceptance criteria if: mean absolute OD 570 nm of the three negative control tissues is ${\geq}0.8$ and ${\leq}2.8$, mean relative tissue viability of the three positive control tissues is ${\leq}20%$, standard deviation of relative tissue viability obtained from each three concurrently tested tissues is ${\leq}18%$. Honeypolis is therefore classified as "non-irritant" in accordance with UN GHS "No Category".

Expression of Nuclear Factor Erythroid 2 Protein in Malignant Cutaneous Tumors

  • Choi, Chang Yong;Kim, Jin Young;Wee, Seo Yeong;Lee, Jang Hyun;Nam, Doo Hyun;Kim, Chul Han;Cho, Moon Kyun;Lee, Yoon Jin;Nam, Hae Seon;Lee, Sang Han;Ch, Sung Woo
    • Archives of Plastic Surgery
    • /
    • v.41 no.6
    • /
    • pp.654-660
    • /
    • 2014
  • Background Reactive oxygen species (ROS) damages cell molecules, and modifies cell signaling. The nuclear factor E2-related factor (Nrf2) is a critical transcription regulator, which protects cells against oxidative damage. Nrf2 expression is increased in a large number of cancers. However, little information has been reported regarding the expression of Nrf2 in skin cancers. Hence, we explored the expression of Nrf2 protein in skin cancers. Methods The Nrf2 protein expression in 24 specimens, including 6 malignant melanomas (MM), 6 squamous cell carcinomas (SCC), 6 basal cell carcinomas (BCC), and 6 normal skin tissues, was evaluated by western blotting. Immunohistochemical staining was performed. The expression of Kelch-like ECH-associated protein 1 (Keap1), the key regulator of Nrf2, was also analyzed by western blotting. Results Small interfering RNA transfection to the melanoma cell line G361 confirmed that an approximately 66 kDa band was the true Nrf2 band. The western blot revealed that the Nrf2 protein was definitely expressed in normal skin tissues, but the Nrf2 expression was decreased in MM, SCC, and BCC. Immunohistochemical examination showed that expression of Nrf2 was decreased in all skin cancer tissues compared to the normal skin tissues. Keap1 was not expressed in all malignant skin tumors and normal skin tissues by western blot. Conclusions ROS was increased in various types of cancers which proteins were highly expressed or underexpressed. This study demonstrated that the expression of Nrf2 protein was down-regulated in human malignant skin tumors. We suggest that decreased expression of Nrf2 is related to skin cancers.

THE REVIEW OF TRANSMISSION OF INFECTIOUS DISEASE IN HUMAN TISSUE TRANSPLANTATION: PHASE II. ALLOGENIC SOFT TISSUES (동종조직이식술시 전염성질환의 이환가능성에 대한 고찰 II: 동종연조직)

  • Lee, Eun-Young;Kim, Kyoung-Won;Um, In-Woong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.3
    • /
    • pp.262-267
    • /
    • 2007
  • Implantation of allografts has increased widely with not only the availability of many allogenic bone but also allogenic soft tissues. The aim of tissue banking is to provide surgeons with safe tissues compatible with their intended clinical application. The incidence of tissue transplant-transmitted infection is unknown and can only be inferred from prospective studies. The possibility of donor-to-recipient disease transmission through soft tissue transplantation can be considered by reviewing the risk associated with other transplanted hard tissues. Viral, bacterial, and fungal infections have been transmitted via transplantation of soft tissue allografts such as skin, cornea, dura, pericardium. fascia lata, and heart valves. Corneas have transmitted rabies, Creutzfeldt-Jakob disease (CJD), hepatitis B (HBV), cytomegalovirus (CMV), herpes simplex virus (HSV), bacteria, and fungi. Heart valves have been implicated in transmitting tuberculosis, hepatitis B. HIV-1 and CMV. CJD has been transmitted by dura and pericardium transplants. Skin has transmitted CMV, bacteria, and fungi. Cadaveric skin, pericardium, dura, and fascia lata have been used in dental patients with intra-oral soft tissue injuries and GBR. This study is review of the considering transmission of infectious disease in allogenic soft tissues and guidelines of reducing the risk. Prior to use, many tissues are exposed to antibiotics, disinfectants, and sterilants, which further reduce or remove the risk of transmitted disease. Because some soft tissue grafts cannot be subjected to sterilization steps, the risk of infectious disease transmission remains and thorough donor screening and testing is especially important.

Guidelines for Manufacturing and Application of Organoids: Skin

  • Seunghee Lee;Yeri Alice Rim;Juryun Kim;Su Hyon Lee;Hye Jung Park;Hyounwoo Kim;Sun-Ju Ahn;Ji Hyeon Ju
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.182-193
    • /
    • 2024
  • To address the limitations of animal testing, scientific research is increasingly focused on developing alternative testing methods. These alternative tests utilize cells or tissues derived from animals or humans for in vitro testing, as well as artificial tissues and organoids. In western countries, animal testing for cosmetics has been banned, leading to the adoption of artificial skin for toxicity evaluation, such as skin corrosion and irritation assessments. Standard guidelines for skin organoid technology becomes necessary to ensure consistent data and evaluation in replacing animal testing with in vitro methods. These guidelines encompass aspects such as cell sourcing, culture techniques, quality requirements and assessment, storage and preservation, and organoid-based assays.

Fibroblast Growth Factor 4 (FGF4) Expression in Malignant Skin Cancers (악성 피부 종양에서의 Fibroblast Growth Factor 4 (FGF4) 발현)

  • Cho, Moon-Kyun;Song, Woo-Jin;Kim, Chul-Han
    • Archives of Plastic Surgery
    • /
    • v.38 no.3
    • /
    • pp.217-221
    • /
    • 2011
  • Purpose: FGF4 (fibroblast growth factor 4) is a newly characterized gene which was found to be a transforming gene in several cancerous cells. FGF4 expression and amplification has been subsequently observed in several human cancers including stomach cancer, breast cancer, head and neck squamous cell carcinoma, lung cancer and bladder cancer. This study was designed to measure the protein expression of FGF4 in malignant skin cancers. Methods: We examined 8 normal skin tissues and 24 malignant skin tumor tissues which were 8 malignant melanomas, 8 squamous cell carcinomas and 8 basal cell carcinomas. The specimens were analyzed for the protein expression of FGF4 using immunohistochemical staining. To evaluate the amount of expression of FGF4, the histochemical score (HSCORE) was used. Results: FGF4 was expressed more intensely in malignant melanoma, followed by SCC and BCC in immunohistochemistry. The average HSCORE was 0.01 for normal skin, 2.02 for malignant melanoma, 1.28 for squamous cell carcinoma, and 0.27 for basal cell carcinoma, respectively. The expression of FGF4 in malignant melanoma and squamous cell carcinoma was increased in comparison with normal tissues and basal cell cancer, and the difference was statistically significant (p<0.05). The difference between malignant melanoma and squamous cell carcinoma was not statistically significant. Conclusion: These findings provide evidences that the expression of FGF4 plays an important role in malignant melanoma and squamous cell carcinoma progressions. This article demonstrates expression of FGF4 in human skin malignant tumors, and suggests that FGF4 is more expressed in highly aggressive skin tumors.

The interation between surfactants and keratinous tissues (계면활성제가 케라틴조직에 미치는 영향)

  • Breuer, M.M.
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.7 no.1
    • /
    • pp.53-76
    • /
    • 1979
  • During cosmetic treatments, SURFACTANTS penetrate into KERATINOUS TISSUES (hair, skin and nails). Whereas some of these surfactant molecules migrate to the vital tissues, a considerable fraction remains bound to the keratin. The extent of binding depends both on the nature of the head group and the length of the hydrophobic tail of the detergent molecules. In addition to entering the amorphous region of the keratin, some of the detergents also penetrate into the crystalline microfibrils and change their structures affecting their tensile properties. Owing to an uneven distribution of detergent molecules in the tissues, an anisotropy of the elastic moduli will occur, resulting in considerable internal stresses which, in rum, might lead to a deterioration of hair, skin and nails. The chemical behavior of keratins is also influenced by the presence of absorbed detergent in their structures. Depending on the detergents and the conditions, these effects can be either protective or detrimental. The deposition of detergent molecules into keratin can be enhanced or diminished by the inclusion of appropriate ingredients into the product formulae.

  • PDF