• 제목/요약/키워드: skin region boundary

검색결과 39건 처리시간 0.022초

충격파와 경계층 간섭유동 제어에서 오일막을 이용한 유동가시화 (Flow Visualization Using Thin Oil-Film in the Flow Control of Shock Wave/Turbulent Boundary-Layer Interactions)

  • 이열
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.117-120
    • /
    • 2002
  • An experimental research has been carried out for flow control of the shock wave/turbulent boundary-layer interaction utilizing aeroelastic mesoflaps. Various shapes and thicknesses of the mesoflap are tested to achieve different deflections of the flap, and ail the results are compared to the solid-wall reference case without flow-control mechanism. Quantitative variation of skin friction has been measured downstream of the interactions using the laser interferometer skin friction meter, and qualitative skin friction distribution has been obtained by observing the interference fringe pattern on the oil-film surface. A strong spanwise variation in the fringe patterns with a narrow region of separation near the centerline is noticed to form behind the shock structure, which phenomenon is presumed partially related to three-dimensional flow structures associated with both the sidewalls and the bottom test surface. The effect of the shape of the cavity is also observed and it is noticed that the shape of the cavity is not negligible.

  • PDF

He-Ne 레이저를 이용한 표면전단응력 측정에 관한 연구 (Skin friction measurements using He-Ne laser)

  • 최승호;이열
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.939-947
    • /
    • 1997
  • An experimental study of the skin friction measurement in a turbulent boundary-layer has been carried out. The skin friction measurements are made using the laser interferometer skin friction (LISF) meter, which optically detects the rate of thinning of an oil applied to the test surface. This technique produces reliable skin friction data over a wide range of flow situations up to 3-dimensional complicated flows with separation, where traditional skin friction measurement techniques are not applicable. The present measured data in a turbulent boundary-layer on a flat plate using the LISF technique shows a good comparison with the result from the previous velocity profile techniques, which proves the validity of the present technique. An extensive error analysis is carried out for the present technique yielding an uncertainty of about .+-.8%, which makes them suitable for CFD code validation purposes. Finally the measurements of the skin friction in a separated region after a surface-mounted obstacle are also presented.

난류 경계층의 표면 마찰력 감소화 (Reduction of Skin Friction Force for Turbulent Boundary Layer)

  • 김시영
    • 수산해양교육연구
    • /
    • 제5권2호
    • /
    • pp.128-137
    • /
    • 1993
  • This paper presents a new concept to reduce turbulent frictional drag by injecting micro-bubble into buffer layer of turbulent boundary layer on flat plate. The buffer layer of boundary was specified by minus velocity gradient of law of the wall. When the buffer layer region of turbulent boundary layer is filled with micro-bubble of air and viscous of the region is kept low, the velocity profile in the region should be changed substantially. Then the Reynolds stress in the buffer layer region becomes less, which guide to higher velocity gradient there. It results in reduction of velocity gradient at the viscous sublayer, which gives the reduction of shear stress at the wall.

  • PDF

자유유동 난류 하의 주기적 통과 후류의 영향을 받는 익형 위 경계층 천이 (Multimode Boundary-Layer Transition on an Airfoil Influenced by Periodically Passing Wake under the Free-stream Turbulence)

  • 박태춘;전우평;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.687-690
    • /
    • 2002
  • Multimode boundary-layer transition on a NACA0012 airfoil is experimentally investigated under periodically passing wakes and the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensity(Tu) at the leading edge of the airfoil is $0.5\;or\;3.5\;{\%}$. The Reynolds number ($Re_c$) based on chord length (C) of the alrfoil is $2.0{\times}10^5$, and Strouhal number ($St_c$) of the passing wake is about 0.7. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The wake-passing orientation changes pressure distribution on the airfoil in a different manner irrespective of the free-stream turbulence. Regardless of free-stream turbulence level, turbulent patches for the receding wakes propagate more rapidly than those for the approaching wake because adverse pressure gradient becomes larger. The patch under the high free-stream turbulence ($Tu=3.5{\%}$) grows more greatly in laminar-like regions compared with that under the low background turbulence ($Tu=0.5{\%}$) in laminar regions. The former, however, does not greatly change the original turbulence level in the very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually lose his identification, whereas the latter keep growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and for the receding wakes. The calmed region delays the breakdown further downstream and stabilizes more the boundary layer.

  • PDF

고난류강도 자유유동에서 평판 경계층 천이의 예측을 위한 난류 모형 개발 (Development of k-$\epsilon$ model for prediction of transition in flat plate under free stream with high intensity)

  • 백성구;임효재;정명균
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.337-344
    • /
    • 2000
  • A modified k-$\epsilon$ model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing Length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a university model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity ( $1\%{\~}6\%$ ) under zero-pressure gradient. It was found that the profiles of mom velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily Predicted throughout the flow regions.

  • PDF

주기적인 분사/흡입이 난류경계층에 미치는 영향 (Influence of Periodic Blowing and Suction on a Turbulent Boundary Layer)

  • 박영수;박상현;성형진
    • 한국가시화정보학회지
    • /
    • 제1권1호
    • /
    • pp.64-74
    • /
    • 2003
  • An experimental study was carried out to investigate the effect of periodic blowing and suction on a turbulent boundary layer. Particle image velocimetry (PIV) was used to probe the characteristics of the flow. The local forcing was introduced to the boundary layer via a sinusoidally-oscillating jet issuing from a thin spanwise slot. Three forcing frequencies (f$^{+}$=0.044, 0.066 and 0.088) with a fixed forcing amplitude (A$^{+}$=0.6) were employed at $Re_{=690. The effect of the forcing angles ($\alpha$=60$^{\circ}$ , 90$^{\circ}$ and 120$^{\circ}$ ) was investigated under the fixed forcing frequency (f$^{+}$=0.088). The PIV results showed that the wall region velocity decreases on imposition of the local forcing. Inspection of phase-averaged velocity profiles revealed that spanwise large-scale vortices were generated in the downstream of the slot and persist further downstream. The highest reduction in skin friction was achieved at highest forcing frequency (f$^{+}$=0.088) and a forcing angle of $\alpha$=120$^{\circ}$. The spatial fraction of the vortices was examined to analyze the skin friction reduction.

  • PDF

피부색 및 깊이정보를 이용한 영역채움 기반 손 분리 기법 (Region-growing based Hand Segmentation Algorithm using Skin Color and Depth Information)

  • 서종훈;채승호;심진욱;김하영;한탁돈
    • 한국멀티미디어학회논문지
    • /
    • 제16권9호
    • /
    • pp.1031-1043
    • /
    • 2013
  • 영상에서 배경을 제거하고 손을 분리하는 기술은 손 인식 연구에서 가장 먼저 수행되는 기술이며, 분리된 결과 영상의 성능에 따라 이후의 인식 단계의 성능이 결정되는 중요한 기술이다. 기존의 연구는 조명 및 배경의 변화에 취약하거나 다수의 사용자와 상호작용에 한계가 있었다. 본 논문에서는 컬러 영상과 깊이 영상을 혼용하여 손을 분리하는 기술을 제안한다. 먼저 입력된 컬러 영상을 이용하여 복잡한 환경에서도 정확하게 영역 채움을 위한 초기 위치를 설정하였다. 이 위치를 기준으로 영역 채움 연산을 위한 한계 영역을 재설정하여 조명 변화로 침식된 영역을 포함하도록 하고, 깊이 영상에서 영역 채움 연산을 수행함으로써 조명과 환경의 변화에도 강인하게 손의 영역을 분리하도록 하였다. 또한, 이렇게 분리된 손의 영역을 이용하여 실시간으로 피부 모델을 학습함으로써 조명 환경에 적응적으로 피부 모델을 갱신하여 보다 강인한 인식 성능을 얻을 수 있었다. 이를 다양한 조명 및 배경 환경에서 기존의 알고리즘과 비교 실험을 수행하여 강인한 인식 성능을 확인할 수 있었으며, 특히 역광 환경과 같이 조명 변화가 극심한 환경에서 강인한 성능을 보여주었다.

자유유동 난류강도 변화에 따른 평판위 천이 경계층의 유동특성에 관한 실험적 연구 (Flow Characteristics of Transitional Boundary Layers on a Flat Plate Under the Influence of Freestream Turbulent Intensity)

  • 신성호;전우평;강신형
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1335-1348
    • /
    • 1998
  • Flow characteristics in transitional boundary layers on a flat plate were experimentally investigated under three different freestream conditions i. e. uniform flow with 0.1 % and 3.7% freestream turbulent intensity and cylinder-wake with 3.7% maximum turbulent intensity. Instantaneous streamwise velocities in laminar, transitional and turbulent boundary layers were measured by I-type hot-wire probe. For estimation of wall shear stresses on the flat plate, measured mean velocities near the wall were applied to the principle of Computational Preston Tube Method (CPM). Distributions of skin friction coefficients were reasonably predicted in all developed boundary layers. Intermittency profiles, which were estimated using Conditional Sampling Technique in transitional boundary layers, were also consistent with previously published data. It was predicted that the incoming turbulent intensity had more influence on transition onset point and transition process than freestream turbulent intensity existed just over the transition region. It was also confirmed that non-turbulent and turbulent profiles in transitional boundary layers could not be simply treated as Blasius and fully turbulent profiles.

국소적 초음파 가진이 난류경계층에 미치는 영향 (Influence of Local Ultrasonic Forcing on a Turbulent Boundary layer)

  • 박영수;성형진
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.17-22
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient ($C_{f}$) decreases $60\%$ and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall, In tile vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

균일(均一) 압력(壓力) 분포(分布)에 의(依)한 난류(亂流) 경계층내(境界層內) 결성(結性) 마찰력(摩擦力)의 감소화(減小化)에 관한 연구(硏究) (A Study on the Reduction of Viscous Frictional Force with Uniform Pressure Distribution in the Turbulent Boundary Layer)

  • 성두남;김시영
    • 수산해양교육연구
    • /
    • 제9권1호
    • /
    • pp.40-48
    • /
    • 1997
  • In this study, uniform pressure distribution with small hole on the surface of symmetric object were given to reduce the viscous frictional force. The results were as follows : 1. The velocity on upper stream were accelerated by uniform pressure distribution on symmetric objects for reducing the viscous frictional resistances. 2. The effects of the distributed small holes were reduced the viscous frictional resistances in down stream region more than upper stream due to the increasing pressure in reverse flow region. 3. The viscous skin friction on surface of symmetric objects with and without distributed small holes are effect in region of upper stream and much decreased in down stream region due to increasing of boundary layer thickness.

  • PDF