• Title/Summary/Keyword: skin permeation studies

Search Result 37, Processing Time 0.025 seconds

Characterization and Transdermal Delivery of Ethosomes Loaded with Liquiritigenin and Liquiritin (리퀴리티게닌과 리퀴리틴을 담지한 에토좀의 특성 및 경피 전달)

  • Im, Na Ri;Kim, Hae Soo;Lim, Ji Won;Kim, Kyeong Jin;Noh, Geun Young;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.563-568
    • /
    • 2015
  • Liquiritin and its aglycone, liquiritigenin are flavonoid found in licorice that show anti-oxidant and anti-aging properties. In this study, ethosomes loaded with hydrophobic liquiritigenin or liquiritin were prepared as a transdermal delivery system. The particle size, entrapment efficiency, and skin permeability of ethosomes were evaluated. Ethosome containing liquiritigenin was stable up to 2 mM and ethosome containing liquiritin was stable up to 0.75 mM concentration. The particle size of ethosomes containing 0.75 mM liquiritigenin and liquiritin was 143.85 and 158.90 nm, respectively and the entrapment efficiency was 47.51 and 54.61%, respectively. The entrapment efficiency was improved with increasing concentrations of drugs. Ethosomes loaded with liquiritigenin or liquiritin were superior in skin permeation ability compared to that of 20% ethanol solution and conventional liposomes. These results suggest that ethosomes containing 0.50 mM liquiritigenin or liquiritin are effective for the skin permeation and may be used as an antiaging and antioxidant ingredient in cosmetic formulation.

Microemulsion-based Hydrogel Formulation of Itraconazole for Topical Delivery

  • Lee, Eun-A;Balakrishnan, Prabagar;Song, Chung-Kil;Choi, Joon-Ho;Noh, Ga-Ya;Park, Chun-Geon;Choi, Ae-Jin;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.5
    • /
    • pp.305-311
    • /
    • 2010
  • The present study was aimed at preparing microemulsion-based hydrogel (MBH) for the skin delivery of itraconazole. Microemulsion prepared with Transcutol as a surfactant, benzyl alcohol as an oil and the mixture of ethanol and phasphatidyl choline (3:2) as a cosurfactant were characterized by solubility, phase diagram, particle size. MBHs were prepared using 0.7 % of xanthan gum (F1-1) or carbopol 940 (F1-2) as gelling agents and characterized by viscosity studies. The in vitro permeation data obtained by using the Franz diffusion cells and hairless mouse skin showed that the optimized microemulsion (F1) consisting of itraconazole (1% w/w), benzyl alcohol (10% w/w), Transcutol (10% w/w) and the mixture of ethanol and phospahtidylcholine (3:2) (10% w/w) and water (49% w/w) showed significant difference in the flux (${\sim}1{\mu}g/cm^2/h$) with their corresponding MBHs (0.25-0.64 ${\mu}g/cm^2/h$). However, the in vitro skin drug content showed no significant difference between F1 and F1-1, while F1-2 showed significantly low skin drug content. The effect of the amount of drug loading (0.02, 1 and 1.5% w/w) on the optimized MBH (F1-2) showed that the permeation and skin drug content increased with higher drug loading (1.5%). The in vivo study of the optimized MBH (F1-2 with1.5% w/w drug loading) showed that this formulation could be used as a potential topical formulation for itraconazole.

In Vitro and In Vivo Studies of Topical Delivery System of Gentisic Acid in Hairless Mice

  • Bian, Shengjie;Zheng, Junmin;Kim, Jung-Sun;Choi, Myeong-Jun;Chung, Ho-Kwon;Lee, Chi-Ho;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.161-164
    • /
    • 2002
  • Gentisic acid is a skin-whitening agent which inhibits the tyrosinase activity, an essential enzyme in the process of biological synthesis of melanin. Since melanin is synthesized in melanocytes located between the viable epidermis and dermis layer, drug amount delivered into the epidermis/dermis layer can provide valuable information for the biological effect of skin-whitening agents. The purpose of this study was to prepare the gentisic acid patches with 2% dodecylamine as enhancer, and to observe the in vitro skin permeation and in vivo skin deposition of gentisic acid. Gentisic acid in DuroTak 87-2510 patch formulation permeated across hairless mouse skin at the rate of $40.79\;{\mu}g/cm^2/hr$. In vivo study showed that the gentisic acid amount in both the stratum corneum and the viable epidermis/dermis increased with the increase of application time. The amount of gentisic acid in the stratum corneum was higher than that in the epidermis/dermis layer, and was expected to provide a reservoir effect even after removing the patches. Thus, the patch formulation seems to be useful for the topical delivery of skin-whitening agent into the epidermis/dermis layer, the target site.

Development of Porous Cellulose Hydrogel for Enhanced Transdermal Delivery of Liquiritin and Liquiritigenin as Licorice Flavonoids (감초 플라보노이드 Liquiritin 및 Liquiritigenin을 담지한 피부전달체인 셀룰로오스 다공성 하이드로젤 제형 개발)

  • Kim, Su Ji;Kwon, Soon Sik;Yu, Eun Ryeong;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.676-681
    • /
    • 2014
  • Licorice, widely used as a herbal medicine, has flavonoids such as liquiritin and its aglycone, liquiritigenin that show anti-oxidant and anti-inflammatory properties. Licorice flavonoid-loaded cellulose hydrogels were prepared as carriers for skin drug delivery, and their properties were investigated. The porous cellulose hydrogel was made by reacting cellulose with epichlorohydrin as a cross-linking agent in NaOH/urea(1~10%) solutions. Through studies on the rheological properties and water uptake of the hydrogel, a NaOH/urea(6%) solution was established as being optimum for the synthesis of the cellulose hydrogel containing liquiritin and liquiritigenin. Scanning electron microscopy (SEM) observations of a cross-section of the prepared hydrogel indicated its porosity. In particular, in skin permeation experiments using a Franz diffusion cell, hydrogel containing the licorice flavonoids showed remarkable transdermal permeation compared to the control group. These results indicate that porous cellulose hydrogel is a potential drug delivery system to enhance the skin permeation of licorice flavonoids.

Pectin Micro- and Nano-capsules of Retinyl Palmitate as Cosmeceutical Carriers for Stabilized Skin Transport

  • Ro, Jieun;Kim, Yeongseok;Kim, Hyeongmin;Park, Kyunghee;Lee, Kwon-Eun;Khadka, Prakash;Yun, Gyiae;Park, Juhyun;Chang, Suk Tai;Lee, Jonghwi;Jeong, Ji Hoon;Lee, Jaehwi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • Retinyl palmitate (RP)-loaded pectinate micro- and nano-particles (PMP and PNP) were designed for stabilization of RP that is widely used as an anti-wrinkle agent in anti-aging cosmeceuticals. PMP/PNP were prepared with an ionotropic gelation method, and anti-oxidative activity of the particles was measured with a DPPH assay. The stability of RP in the particles along with pectin gel and ethanolic solution was then evaluated. In vitro release and skin permeation studies were performed using Franz diffusion cells. Distribution of RP in each skin tissue (stratum corneum, epidermis, and dermis) was also determined. PMP and PNP could be prepared with mean particle size diameters of $593{\sim}843{\mu}m$ (PMP) and 530 nm (i.e., $0.53{\mu}m$, PNP). Anti-oxidative activity of PNP was greater than PMP due largely to larger surface area available for PNP. The stability of RP in PMP and PNP was similar but much greater than RP in pectin bulk gels and ethanolic solution. PMP and PNP showed the abilities to constantly release RP and it could be permeated across the model artificial membrane and rat whole skin. RP was serially deposited throughout the skin layers. This study implies RP loaded PMP and PNP are expected to be advantageous for improved anti-wrinkle effects.

Iontophoretic Delivery of Levodopa: Permeation Enhancement by Oleic Acid Microemulsion and Ethanol (Levodopa의 이온토포레시스 경피전달: 올레인산 아이크로에멀젼 및 에탄올의 투과증진)

  • Jung, Shin-Ae;Gwak, Hye-Sun;Chun, In-Koo;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.373-380
    • /
    • 2008
  • In order to develop optimal formulation and iontophoresis condition for the transdermal delivery of levodopa, we have evaluated the effect of two permeation enhancers, ethanol and oleic acid in microemulsion, on transdermal delivery of levodopa. In vitro flux studies were performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. Current density applied was $0.4\;mA/cm^2$ and current was off after 6 hours application. Levodopa was analysed by HPLC at 280 nm. The o/w microemulsions of oleic acid in buffer solution (pH 2.5 & 4.5) were prepared using oleic acid, Tween 80 and ethanol. The existence of microemulsion regions were investigated in pseudo-ternary phase diagrams. Contrary to our expectation, cumulative amount of levodopa transported from microemulsion (pH 2.5) for 10 hours was similar to that from aqueous solution in all delivery methods (passive, anodal and cathodal). When pH of the micro-emulsion was pH 4.5, cumulative amount of levodopa transported for 10 hours increased about 40% (anodal) to 50% (cathodal), when compared to that from aqueous solution. Flux from pH 4.5 microemulsion showed higher value than that from pH 2.5 in all delivery methods. These results seem to indicate that electroosmosis plays more dominant role than electrorepulsion in the flux of levodopa at pH 2.5. The effect of ethanol on iontophoretic flux was studied using pH 2.5 phosphate buffer solution containing 3% or 5% (v/v) ethanol. Flux enhancement was observed in passive and anodal delivery as the concentration of the ethanol increased. Without ethanol, cathodal delivery showed higher flux than anodal delivery. Anodal delivery increased the cumulative amount of levodopa transported 1.6 fold by 5% ethanol after 10 hours. However, in cathodal delivery, no flux enhancement of levodopa was observed during current application and only marginal increase in cumulative amount transported after 10 hours was observed by 5% ethanol. These results seem to be related to the decrease in dielectric constant of the medium and the lipid extraction of the ethanol, which decrease the electroosmotic flow, and thus decrease the flux. Overall, the results provide important insights into the role of electroosmosis and electrorepulsion in the transport of levodopa through skin, and provide some useful informations for optimal formulation for levodopa.

Improved Stability of Liposome by Association of Amphiphilic Polyelectrolytes (양친매성 고분자전해질 도입을 통한 리포좀의 안정도 증진에 관한 연구)

  • Cho, Eun-Chul;Lim, Hyung-Jun;Kim, Jun-Oh;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.1 s.60
    • /
    • pp.1-6
    • /
    • 2007
  • It has been generally known that liposomes become unstable when they contain cyclodextrins (CDs). Our present studies demonstrate that these liposomes can be stable by association of amphiphilic polyelectrolytes. Transmission electron microscopy and photocorrelation spectroscopy results showed that polymer-associated liposomes containing CDs (${\beta}-CD$(${\beta}CD$) and hydroxypropyl-${\beta}CD$ ($HP{\beta}CD$)) were more stable than phosphatidylcholine (PC)-cholesterol (Chol) liposomes containing these CDs. We also compared the stability of PC-Chol liposomes with polymer-associated liposomes containing $HP{\beta}CD$ complexed with water-insoluble drug, rhaponticin (Rh). Two liposomes were relatively stable when $HP{\beta}CD$ did not contain Rh, but Rh-$HP{\beta}CD$ complexes triggered the disruption of PC-Chol liposomes. In contrast, polymer-associated Liposomes containing Rh-$HP{\beta}CD$ complexes maintained its stability over 6 months. The skin permeation test demonstrated that drugs solubilized by CDs were delivered better into the skin of guinea pig by using polymer-associated liposomes than by using PC-Chol liposomes. Above results showed that polymer-associated liposomes gave an effective way to stabilize the liposomes containing drug-loaded CDs, which gives an application of liposomes in drug delivery systems.