• Title/Summary/Keyword: skin absorption

Search Result 330, Processing Time 0.04 seconds

Characterization of Acid-soluble Collagen from Alaska Pollock Surimi Processing By-products (Refiner Discharge)

  • Park, Chan-Ho;Lee, Jae-Hyoung;Kang, Kyung-Tae;Park, Jae-W.;Kim, Jin-Soo
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.549-556
    • /
    • 2007
  • The study was carried out to examine on the refiner discharge from Alaska pollock as a collagen resource by characterizing biochemical and functional properties of collagen. The refiner discharge from Alaska pollock surimi manufacturing was a good resource for collagen extraction according to the results of total protein, heavy metal, volatile basic nitrogen, collagen content, amino acid composition, and thermal denaturation temperature (TDT). TDT of acid soluble collagen from refiner discharge showed $20.7^{\circ}C$, which was similar to that of collagen from Alaska pollock muscle and was higher than that of collagen from Alaska pollock skin. TDT of acid-soluble collagen from refiner discharge was, however, lower than those of skin collagens from warm fish and land animal. Acid-soluble collagen from refiner discharge of Alaska pollock could be used as a functional ingredient for food and industrial applications according to the results of water and oil absorption capacities, and emulsion properties. In addition, if the thermal stability of the acid-soluble collagens is improved, collagen from refiner discharge from Alaska pollock could be more effectively used.

Laser Energy Optimization for Dissimilar Polymer Joining (이종폴리머 접합을 위한 레이저 에너지 최적제어 기법)

  • Song, Chi Hun;Choi, Hae Woon
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.63-69
    • /
    • 2014
  • Dual laser heat sources were used for polymer based material joining. An infrared camera and thermocouple DAQ system were used to correlate the temperature distribution to computer simulation. A 50 degree tilted pre-heating laser source was acting as a heating source to promote the temperature to minimize thermal shock by the following a welding heat source. Based on the experimental result, the skin depth was empirically estimated for computer simulation. The offsets of 3mm, 5mm and 10mm split by weld and preheat were effectively used to control the temperature distribution for the optimal laser joining process. The closer offset resulted in an excessive melting or burning caused by sudden temperature rising. The laser power was split by 50%, 75% and 100% of the weld power, and the best results were found at 50% of preheating. To accurately simulate the physical laser beam absorption and joining optical properties were experimentally measured for the computer FEM simulation. The simulation results showed close correlation between theoretical and experimental results. The developed dual laser process is expected to increase productivity and minimize the cost for the final products.

Effect of Benzalkonium Chloride on Percutaneous Absoption of Antisense Phosphorothioate Oligonucleotides

  • Lee, Young-Mi;Lee, Sung-Hee;Ko, Geon-Il;Kim, Jae-Baek;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.435-440
    • /
    • 1996
  • The effect of benzalkonium chloride on skin permeability of partially modified antisense phosphorothioate oligonucleotides (PS-ODN), which are designed as scar formation inhibitor, was investigated using Franz Diffusion Cell. When the concentration ratio of PS-ODN-quarternary ammonium salt complex is more than 1:100, the apparent partition coefficient (APC) of each complex was increased in the following order; tetraphenyl phosphonium chloride (TPP) < cetyltrimethyl ammonium bromide(CTAB) < benzalkonium chloride (BZ). The permeability of PS-ODN through the rat skin increased in the presence of BZ. The fluxs of PS-ODN with BZ were increased by addition of Pluronic F 68 or Triton X-100 to phosphate buffered saline (PBS), respectively. When the mole ratio of PS-ODN to BZ is 1:10, the fluxs penetrated of PS-ODN with BZ was greatest. The increase of the permeability in the presence of BZ might be due to the formation of lipophilic ion-pair complex between PS-ODN and BZ. By regulation of mole ratio of PS-ODN to BZ, the development of topical dosage forms using PS-ODN as scar formation inhibitor will be possible with minimal systemic exposure.

  • PDF

Hazards Assessment and Workplace Management of Epichlorohydrin (Epichlorohydrin의 유해성과 작업환경 관리)

  • Kim, Hyeon-Yeong;Hwang, Yang In;Kuk, Won-Kwen
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2012
  • Objectives: Epichlorohydrin is a material that has been predicted to have high volatility and strong toxicity and is used normally in working area. Therefore, the hazardous and dangerous level and the foreign management system about epichlorohydrin should be invested at home and abroad and through hazard assessment for occupational environment measurement and exposure status of industrial workers in domestic working area. Methods: To assess risk and to suggest Development and Adoption to prevent health damage of workers owing to the epichlorohydrin exposure, the hazardousness and dangerousness of epichlorohydrin and its practical examples and regulation level for domestic and abroad health impairment are researched on the base of various references. Results: The epichlorohydrin caused skin and mucus membrane irritation, respiratory paralysis, kidney and live damage under the influence of acute toxicity and in animal study, it was confirmed as a doubtful carcinogenic substance to trigger reducement of sperm number and reproduction ability, abnormal spermatogenesis, mutagen, increase of forestomach epithelium and occurrence of papilloma and so on, as well as it induced stimulus asthma and allergic contact dermatitis for exposure workers. Conclusions: Epichlorohydrin was found to occur allergic contact dermatitis, carcinogenesis doubt and reproduction toxicity and was verified as a material which would be established reinforcement of management level to care health of handlers, such as denotement dangerousness of skin absorption.

The Effect of Vehicles and Pressure Sensitive Adhesives on the Percutaneous Absorption of Quercetin through the Hairless Mouse Skin

  • Kim, Hye-Won;Gwak, Hye-Sun;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.763-768
    • /
    • 2004
  • To investigate the feasibility of developing a new quercetin transdermal system, a preformulation study was carried out. Therefore, the effects of vehicles and pressure-sensitive adhesives (PSA) on the in vitro permeation of quercetin across dorsal hairless mouse skin were studied. Among vehicles used, propylene glycol monocaprylate (PGMC) and propylene glycol mono-laurate were found to have relatively high permeation flux from solution formulation (i.e., the permeation fluxes were 17.25$\pm$1.96 and 9.60$\pm$3.87 $\mu\textrm{g}$/$\textrm{cm}^2$/h, respectively). The release rate from PSA formulations followed a matrix-controlled diffusion model and was mainly affected by the amount of PSA and drug loaded. The overall permeation fluxes from PSA formulations were less than 0.30 $\mu\textrm{g}$/$\textrm{cm}^2$/h, which were significantly lower compared to those obtained from solution formulations. The lower permeation fluxes may be due to the decrease of solubility and diffusivity of quercetin in the PSA layer, considering the fact that the highest flux of 0.26 $\mu\textrm{g}$/$\textrm{cm}^2$/h was obtained with the addition of 0.2% butylated hydroxyanisole in PGMC-diethyl-ene glycol monoethyl ether co-solvents (80-85 : 15-20, v/v). Taken together, these observations indicate that improvement in the solubility and diffusivity of quercetin is necessary to realize fully the clinically applicable transdermal delivery system for the drug.

Pharmacokinetic Evaluation of Flurbiprofen Gel Using Rats (흰쥐를 이용한 플루르비프로펜 겔의 약물동력학적 특성평가)

  • Gil, Hyung-Jun;Lee, Woo-Young;Chi, Sang-Cheol
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.483-487
    • /
    • 1994
  • The pharmacokinetic characteristics of an 1% flurbiprofen gel were evaluated using rats in reference to IV bolus and oral administration of the drug using rats. Following the transdermal application of the gel at the dose of 2 mg/kg as flurbiprofen, the $C_{max}$ and $T_{max}$ of the drug were $2.14\;{\mu}g/ml$ and 2 hr, respectively, whereas those after the oral administration of the drug as a suspension were $9.90\;{\mu}g/ml$ and 0.25 hr, respectively. These results indicate that, by the transdermal administration fo flubiprofen as the gel, the absorption of the drug was much slowed down and the lower $C_{max}$ compared to the oral administration may reduce the systemic side effects of the drug. The relative bioavailability of the flurbiprofen gel in reference to the oral dose was 48.5%. Tissue levels of flurbiprofen following the application of 50 mg of the 1% flurbiprofen gel onto ventral skin of rats showed that the maximum drug concentrations in the skin $(8.52\;{\mu}g/g)$ and the muscle $(2.06\;{\mu}g/g)$ occurred at 2 hrs postdose. The drug concentration in the both tissues remained relatively constant over the next 6 hrs following the peak concentration.

  • PDF

In Vitro Percutaneous Absorption of Ondansetron Hydrochloride from Pressure-sensitive Adhesive Matrices through Hairless Mouse Skin

  • Gwak, Hye-Sun;Oh, Ik-Sang;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.644-648
    • /
    • 2003
  • To investigate the feasibility of developing a new ondansetron transdermal system, the effects of vehicles and penetration enhancers on the in vitro permeation of ondansetron hydrochloride (OS) from a pressure-sensitive adhesive (PSA) matrices across dorsal hairless mouse skin were studied. Vehicles employed in this study consisted of various ratios of propylene glycol monocaprylate (PGMC)-diethylene glycol monoethyl ether (DGME) co-solvents and PGMC-propylene glycol (PG) co-solvents with 3% oleic acid. $Duro-Tak^\circledR$ 87-2100 and $Duro-Tak^\circledR$ 87-2196 were used as PSAs. The concentration of DGME in PGMC-DGME co-solvent system affected the release rate; as the concentration of DGME increased, the release rate decreased. The cumulative release amount of OS increased as the ratio of PSA to drug solution decreased. The permeation flux was also primarily affected by the amount of PSAs; as the amount decreased, the permeation flux increased. The overall fluxes from matrix formulations were significantly lower when compared to those obtained from solution formulations. The ratio of PG to PGMC did not affect permeation flux, while the lag time decreased significantly from $5.14\pm3.31 to 0.31\pm0.12$ h as the PG increased from 40% to 60%.

Photoprotection effect of Pu'er tea and Curcuma longa L. extracts against UV and blue lights

  • Doyeong Son;Ji-Su Jun;KwangWon Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.106-113
    • /
    • 2023
  • Plant extracts have been studied due to their potential as photoprotective agents against UV and blue light exposure. Previous studies have revealed that several plant extracts have photoprotection capacities and synergistic effects with synthetic products. However, such results for pu'er tea and Curcuma longa L. have not been reported yet for a cosmetic formulation. Thus, the objective of this study was to evaluate photoprotection capacities of pu'er tea and C. longa L. extracts for a sunscreen compound. The pu'er tea extract improved sun protection factor value of 2-ethyl-hexyl methoxycinnamate (a synthetic sunscreen compound) by 46% and showed a high antioxidant capability that could help skin recover from photo-induced damage. C. longa L. extract also showed a potential to protect skin from blue light-induced damage because it not only had a maximum absorption peak at the blue light range, but also protected human fibroblasts from blue light-induced damage. The addition of both extracts shifted the critical wavelength of 2-ethyl-hexyl methoxycinnamate from 350 nm to 386 nm, giving it a broad-spectrum feature. Thus, pu'er tea and C. longa L. extracts may enhance the photoprotection ability of synthetic sunscreen products.

Enhancement of Antioxidant and Skin Cancer Inhibition Effects by Fermented Luffa aegyptiaca Extract (수세미오이 발효추출물의 항산화 및 피부암 억제 효과)

  • Kim, Song Yi;Gam, Da Hye;Kim, Jun Hee;Yeom, Suh Hee;Park, Jae-Hyun;Kim, Jin Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.408-414
    • /
    • 2021
  • This study aimed to improve the production of bioactive materials with antioxidant activity using a fermented Luffa aegyripia extract and improve the anticancer effect by enhancing UV absorption and inhibiting melanoma cell growth. The total phenolic content (TPC) and antioxidant activity of the fermented extract were 30.23 mg GAE/g DM and 45.12%, respectively, which was 1.4 times higher than that of the hot-water extract (HWE). The fermented extract showed a UV adsorption rate of 53.9%, which was 1.5 times higher than HWE, and it was concluded that UV absorption was increased by TPC, which was increased through the fermentation of L. aegyptiaca extracts using Lactobacillus. In the anticancer effect test, fermented and HWE extracts had carcinogenic effects of 1.0 and 2.0 mg/mL, respectively. This suggests that the increased antioxidant activity due to the increase in TPC caused by fermentation contributed to the anticancer effect. The UV absorption rate of fermented extracts was 2.4 times higher than HWE, giving them potential use as cosmetics and pharmaceutical materials with high polyphenol contents and antioxidant properties and skin cancer prevention.

The Effect of Enhancer on the Penetration of Indapamide through Hairless Mouse Skin (경피흡수촉진제의 영향에 따른 인다파마이드의 피부투과)

  • Seo, Hui;Jeung, Sang-Young;Park, Ji-Seon;Shin, Byung-Cheol;Hwang, Sung-Joo;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.4
    • /
    • pp.237-242
    • /
    • 2007
  • The chemical formula of indapamide is 3-(aminosulfonyl)-4-chloro-N-(2,3-dihydro-2-methyl-1H-indol-l-yl)-benzamide, Indapamide is an oral antipertensive diuretic agent indicated for the treatment of hypertensive and edema. Indapamide inhibits carbonic anhydrase enzyme. Transdermal drug delivery systems, as compared to their corresponding classical oral or injectable dosage form counterparts, offer many advantages. The most important advantages are improved systemic bioavailability of the pharmaceutical active ingredients (PAI), because the first-pass metabolism by the liver and digestive system are avoided; and the controlled, constant drug delivery profile (that is, controlled zero-order absorption). Also of importance is the reduced dose frequency compared to the conventional oral dosage forms (that is, once-a-day, twice-a-week or once-a-week). Other benefits include longer duration of therapeutic action from a single application, and reversible action. For example, patches can be removed to reverse any adverse effects that may be caused by overdosing. In order to evaluate the effects of vehicles and penetration enhancers on skin permeation of Indapamide, the skin permeation rates of Indapamide from vehicles of different composition were determined using Franz cells fitted with excised hairless skins. Solubility of Indapamide in various solvents was investigated to select a vehicle suitable for the percutaneous absorption of Indapamide, The solvents used were Tween80, Tween20, Labrasol, Lauroglycol90 (LG90) and Peceol. Lauroglycol90 increase the permeability of indapamide approximately 3.75-fold compared with the control. Tween80, Tween20, Labrasol, Lauroglycol90 (LG90) and Peceol showed flux of $0.06ug/cm^2/hr,\;0.4ug/cm^2/hr,\;0.21ug/cm^2/hr,\;0.72ug/cm^2/hr,\;0.29ug/cm^2/hr$, respectively.