• Title/Summary/Keyword: skid mark

Search Result 20, Processing Time 0.023 seconds

A Study on Acceleration of Transient Brake Section and Skidding Section (불완전 제동구간과 활주구간의 감속도 변화에 대한 연구)

  • Kim, Kil Bae;Jung, Woo Teak;Ryu, Tae Sun;Oh, Young Tae
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.83-90
    • /
    • 2012
  • Driver ordinarily takes sudden braking when urgent situation is developed or when the vehicle is involved in an unexpected accident. Therefore, the most common trace at a traffic accident scene is skid mark. Currently, in investigating traffic accident, overspeed is determined by the length of skid mark. However, in order to identify accurate cause of accident, estimation of pre-braking speed which takes into account speed reduction during transient time should be considered as a requirement. In a recent study, several ways to estimate pre-braking speed were suggested, but none considered to differentiate the decelerating transient brake section and skidding section. This study analyzed trends of decelerating transient brake section and skidding section by real braking test.

Relationships Between Pre-Skidding and Pre-Braking Speed (활주 직전과 제동 직전 속도의 상관관계 규명에 관한 연구)

  • Ryu, Tae-Seon;Jeon, Jin-U;Park, Hong-Han;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • This paper investigates the accuracy of vehicle pre-braking speed estimates based upon tire/roadway coefficient of friction (drag factor) measurements and skid mark measurements Data for pre-braking and pre-skidding speeds were collected to determine if there were any correlations between pre-braking speeds and pre-skidding speeds. Braking tests were performed on two vehicles using various measurement devices including a fifth wheel, a speed gun, and a vericom 2000. The vehicle speeds, braking distances, skid mark distances, and deceleration histories were recorded. From these data. coefficients of friction and vehicle pre-skidding speeds for the tested road surface were calculated. The pre-skidding speeds were then compared to the actual pre-braking speeds of the vehicles in order to establish relationships between pre-skidding and pre-braking speed. A correlation between the Pre-skidding speed and the actual pre-braking speed was established for the study data.

Friction Coefficient of Emergency Braking on ABS and Non-ABS Car (ABS와 Non-ABS 승용차량의 급제동시 마찰계수 변화)

  • Kim, Kee-Nam;Lee, Ji-Hoon;Ok, Jin-Kyu;Yoo, Wan-Suk;Park, Ji-Yeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.52-59
    • /
    • 2008
  • Most accident reconstruction or analysis depend on the coefficient of friction to estimate the vehicle speeds. Skid mark and coefficient of friction are usually utilized to calculate the velocity and behavior of vehicles. For a critical case such as traffic accident reconstruction, however, the initial velocity of the car should be calculated precisely. In this paper, emergency brake tests on ABS and Non-ABS brake system are conducted on the dry pavement asphalt road on speed 40, 60, 80 and 100 km/h respectively. The SWIFT sensor was established in the front wheel and rear wheel at driver side to measure the forces, moments and speeds of revolution of the tires. These tests results can be available to brake tests and accident reconstruction.

Analysis for Traffic Accidents against Car-Pedestrian on Simulation (시뮬레이션을 통한 차대 보행자의 교통사고 분석)

  • Chae, Hee-Hong;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.115-121
    • /
    • 2012
  • In spite of serious injuries caused by traffic accidents of car-pedestrian, the dispute is constantly occurring and economic losses and mental suffering is escalating since the cause of accidents is not scientifically identified. This study reviewed vehicle dynamics, driving dynamics, collision dynamics, traffic and road engineering for traffic accidents analysis based on traffic accidents related physically objective evidence and analysed the cause of accidents by getting results which applied vehicle initial collision velocity before collision, processing trajectory, collision stance, vehicle velocity before & after collision and parameter by using PC-Crash program. I found that skid mark and collision velocity of car-pedestrian had the error of 11.2%, 2,27% compared to theoretical values.

Accident Reconstruction Analysis by Mathematical and Optimization Method from Skid Mark and Stopped Position (활주흔과 정지지점으로부터 수학적방법과 최적화방법에 의한 교통사고 재현기법에 관한 연구)

  • 유장석;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.7-17
    • /
    • 2002
  • 본 연구는 차대차 충돌사고시 차량충돌위치와 충돌속도 분석기법을 사고사례를 통해 연구하였다. 차량충돌위치는 사고현장 노면에 생성된 타이어 마크를 이용하여 수학적방법으로, 충돌속도는 실제 사고차량 최종정지위치와 모의충돌실험을 통해 분석된 차량 최종정지위치와의 차를 목적함수로 하여 이를 최소로 수렴하는 최적화기법을 이용하였다. 연구결과, 승용차량 오른쪽 앞바퀴 위치는 중앙선으로부터 좌측으로 0.45m 떨어진 진행방향 1차로 상이고, 왼쪽 앞바퀴는 중앙으로부터 좌측으로 0.345m 떨어진 지점에 위치한 상태이다. 최적화기법을 이용하여 사고차량의 충돌속도를 분석한 결과. 최적화의 오차율이 0.8%인 경우 충돌속도는 승용차량 67.75Km/h, 짚형 승용차량 29.67Km/h로 분석되었으며, 충돌 후 x축에 대한 속도는 승용차량 20.0Km/h, 짚형승용차량 15.69Km/h이고, y축에 대한 속도는 승용차량 15.68Km/h, 짚형 승용차량 7.66Km/h로 분석되었다. 반면, 기존 충돌속도 분석모형식을 이용하여 사고차량의 충돌속도를 분석한 결과 승용차량 64.97Km/h, 짚형승용차량 31.27Km/h로 도출되었다. 따라서, 최적화기법을 통해 분석한 충돌속도와 기존 분석모형식을 이용하여 분석한 충돌속도와의 오차가 승용차량 2.78Km/h, 짚형승용차량 1.6Km/h로 최적화기법을 이용하여 분석한 결과에 대한 신뢰성이 높은 것으로 연구결과 도출되었다 따라서, 추후 차 대 차 충돌사고를 분석함에 있어 타이어 흔적을 이용한 수학적방법과 모의충돌실험을 통한 최적화기법을 이용하면 충돌속도는 물론 충돌전.후 차량의 운동특성에 대한 정확한 분석이 이루어질 수 있을 것으로 기대된다.

The Vehicle Accident Reconstruction using Skid and Yaw Marks (스키드마크 및 요마크를 이용한 차량사고재구성)

  • 이승종;하정섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.55-63
    • /
    • 2003
  • The traffic accident is the prerequisite of the traffic accident reconstruction. In this study, the traffic accident (forward collision) and traffic accident reconstruction (inverse collision) simulations are conducted to improve the quality and accuracy of the traffic accident reconstruction. The vehicle and tire models are used to simulate the trajectories for the post-impact motion of the vehicles after collision. The impact dynamic model applicable to the forward and inverse collision simulations is also provided. The accuracy of impact analysis for the vehicular collision depends on the accuracy of the coefficients of restitution and friction. The neural network is used to estimate these coefficients. The forward and inverse collision simulations for the multi-collisions are conducted. The new method fur the accident reconstruction is proposed to calculate the pre-impact velocities of the vehicles without using the trial and error process which requires the repeated calculations of the initial velocities until the forward collision simulation satisfies with the accident evidences. This method estimates the pre-impact velocities of the vehicles by analyzing the trajectories of the vehicles. The vehicle slides on a road surface not only under the skidding during an emergency braking but also under the steering. A vehicle over steering or cornering with excessive speed loses the traction and leaves tile yaw marks on the road surface. The new critical speed formula based on the vehicle dynamics is proposed to analyze the yaw marks and shows smaller errors than ones of the existing critical speed formula.

Development of Paint-free Metallic Plastic Material for Automotive Parts (자동차 부품용 무도장 메탈릭 플라스틱 소재 개발)

  • Choi, Min Jin;Cho, Jeong-Min;Choi, Young Ho;Choi, Min Ho;Lee, Choon Soo;Sung, Han Ki;Lee, Kyoung Sil;Park, Ki Hun;Hwang, Se Jong
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.295-299
    • /
    • 2022
  • In this paper, paint-free metallic plastic material, polypropylene (PP) and acrylonitrile styrene acrylate (ASA) materials were investigated on the applications for bumper skid plate and outside mirror housing parts. In order to maximize metallic effect, type, size and content of aluminum pigment were optimized based on flop index. Hybrid aluminum pigments with different aspect ratios were used to conceal weld lines. By controlling the fluidity of the material, the flow mark problem, generated on the surface of the part, was resolved. We also investigated the surface defects of flow and weld lines by using the developed modeling and simulation.

Implementation of Intelligent Electronic Acupuncture Needles Based on Bluetooth

  • Han, Chang Pyoung;Hong, You Sik
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.62-73
    • /
    • 2020
  • In this paper, we present electronic acupuncture needles we have developed using intelligence technology based on Bluetooth in order to allow anyone to simply receive customized remote diagnosis and treatment by clicking on the menu of the smartphone regardless of time and place. In order to determine the health condition and disease of patients, we have developed a software and a hardware of electronic acupuncture needles, operating on Bluetooth which transmits biometric data to oriental medical doctors using the functions of automatically determining pulse diagnosis, tongue diagnosis, and oxygen saturation; the functions are most commonly used in herbal treatment. In addition, using fuzzy logic and reasoning based on smartphones, we present in this paper an algorithm and the results of completion of hardware implementation for electronic acupuncture needles, appropriate for the body conditions of patients; the algorithm and the hardware implementation are for a treatment time duration by electronic acupuncture needles, an automatic determinations of pulse diagnosis, tongue diagnosis, and oxygen saturation, a function implementation for automatic display of acupuncture point, and a strength adjustment of electronic acupuncture needles. As a result of our simulation, we have shown that the treatment of patients, performed using an Electronic Acupuncture Needles based on intelligence, is more efficient compared to the treatment that was performed before.

Estimation of Vehicle Speed using Skid Mark (스키드 마크를 이용한 자동차 속도 추정)

  • Hong, Yu-Sik;Han, Chang-Pyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.471-474
    • /
    • 2005
  • For the purpose of objective and scientific inspection, traffic accidents should be appraised and inspected by righteous material evidences, computer simulation, and studies such as automobile engineering, traveling and collision accident dynamics, road and traffic engineering. In this paper, it displays the results of studying cases with the reasons of traffic accidents by analyzing and studying automobile kinetics, real traffic accidents and the results of in scientific and objective ways. In this paper, it is proved that with compared by dry and wet road surface condition, the transient brake time of wet condition is longer than dry road condition. Moreover, compared with unpacked road condition and packed road condition. unpacked road condition is shorter than packed road condition using computer simulation.

  • PDF

An Experimental Study of Tire-Road Friction Coefficient by Transient Brake Time (실차 실험을 통한 제동순시간에 의한 타이어-노면마찰계수에 관한 연구)

  • Han, Chang-Pyoung;Park, Kyoung-Suk;Choi, Myung-Jin;Lee, Jong-Sang;Shin, Un-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.106-111
    • /
    • 2007
  • In this paper, the transient brake time was studied on the van type vehicle with accelerometer. Experiments were carried out on the asphalt(new and polished), unpacked road(earth and gravel) and on wet or dry road conditions. The transient brake time is not effected bzy the vehicle speed. The transient brake time is about 0.41$\sim$0.43second on the asphalt road surface and the error range is within 0.1$\sim$0.16second. For the asphalt road condition, the transient brake time is not effected by both new asphalt road surface and the polished asphalt road surface. With compared by dry and wet road surface condition, the transient brake time of wet condition is longer than dry road condition and compared with unpacked road condition and packed road condition, unpacked road condition is shorter than packed road condition. It is considered that the transient brake time is effected by the road surface fraction coefficient. In other words, the transients brake time increases as friction coefficient decreases.