• Title/Summary/Keyword: skew-cauchy

Search Result 3, Processing Time 0.024 seconds

Further Results on Characteristic Functions Without Contour Integration

  • Song, Dae-Kun;Kang, Seul-Ki;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.461-469
    • /
    • 2014
  • Characteristic functions play an important role in probability and statistics; however, a rigorous derivation of these functions requires contour integration, which is unfamiliar to most statistics students. Without resorting to contour integration, Datta and Ghosh (2007) derived the characteristic functions of normal, Cauchy, and double exponential distributions. Here, we derive the characteristic functions of t, truncated normal, skew-normal, and skew-t distributions. The characteristic functions of normal, cauchy distributions are obtained as a byproduct. The derivations are straightforward and can be presented in statistics masters theory classes.

Depth-Based rank test for multivariate two-sample scale problem

  • Digambar Tukaram Shirke;Swapnil Dattatray Khorate
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.227-244
    • /
    • 2023
  • In this paper, a depth-based nonparametric test for a multivariate two-sample scale problem is proposed. The proposed test statistic is based on the depth-induced ranks and is thus distribution-free. In this article, the depth values of data points of one sample are calculated with respect to the other sample or distribution and vice versa. A comprehensive simulation study is used to examine the performance of the proposed test for symmetric as well as skewed distributions. Comparison of the proposed test with the existing depth-based nonparametric tests is accomplished through empirical powers over different depth functions. The simulation study admits that the proposed test outperforms existing nonparametric depth-based tests for symmetric and skewed distributions. Finally, an actual life data set is used to demonstrate the applicability of the proposed test.

Nonlinear bending of multilayer functionally graded graphene-reinforced skew microplates under mechanical and thermal loads using FSDT and MCST: A study in large deformation

  • J. Jenabi;A.R. Nezamabadi;M. Karami Khorramabadi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.219-232
    • /
    • 2024
  • In current study, for the first time, Nonlinear Bending of a skew microplate made of a laminated composite strengthened with graphene nanosheets is investigated. A mixture of mechanical and thermal stresses is applied to the plate, and the reaction is analyzed using the First Shear Deformation Theory (FSDT). Since different percentages of graphene sheets are included in the multilayer structure of the composite, the characteristics of the composite are functionally graded throughout its thickness. Halpin-Tsai models are used to characterize mechanical qualities, whereas Schapery models are used to characterize thermal properties. The microplate's non-linear strain is first calculated by calculating the plate shear deformation and using the Green-Lagrange tensor and von Karman assumptions. Then the elements of the Couple and Cauchy stress tensors using the Modified Coupled Stress Theory (MCST) are derived. Next, using the Hamilton Principle, the microplate's governing equations and associated boundary conditions are calculated. The nonlinear differential equations are linearized by utilizing auxiliary variables in the nonlinear solution by applying the Frechet approach. The linearized equations are rectified via an iterative loop to precisely solve the problem. For this, the Differential Quadrature Method (DQM) is utilized, and the outcomes are shown for the basic support boundary condition. To ascertain the maximum values of microplate deflection for a range of circumstances-such as skew angles, volume fractions, configurations, temperatures, and length scales-a parametric analysis is carried out. To shed light on how the microplate behaves in these various circumstances, the resulting results are analyzed.