• Title/Summary/Keyword: skarn deposit

Search Result 60, Processing Time 0.175 seconds

Compositional Variation of Arsenopyrites in Arsenic and Polymetallic Ores from the Ulsan Mine, Republic of Korea, and their Application to a Geothermometer (울산광산산(蔚山鑛山産) 유비철석(硫砒鐵石)의 조성변화(組成變化) 및 지질온도계(地質溫度計)에 대(對)한 적용(適用))

  • Choi, Seon-Gyu;Chung, Jae-Ill;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.199-218
    • /
    • 1986
  • Arsenopyrite in arsenic and polymetallic ores from calcic Fe-W skarn deposit of the Ulsan mine, Republic of Korea, has been investigated by means of electron microprobe analysis and X-ray diffractometry. As a result, it is revealed that the Ulsan arsenopyrite may be classified into the following three species with different generation on the basis of its mode of occurrence, chronological order during polymetallic mineralization and chemical composition; arsenopyrites I, II and III. 1) Arsenopyrite I-(Ni, Co)-bearing species belonging to the oldest generation, which has crystallized together with (Ni, Co)-arsenides and -sulpharsenides in the early stage of polymetallic mineralization. In rare cases, it contains a negligible amount of antimony. It occurs usually as discrete grains with irregular outline, showing rarely subhedral form, and is diffused in skarn zone. The maximum contents of nickel and cobalt are 10.04 Ni and 2.45 Co (in weight percent). Occasionally, it shows compositional zoning with narrow rim of lower (Ni+Co) content. 2) Arsenopyrite II-arsenian species, in which (Ni+Co) content is almost negligible, may occur widely in arsenic ores, and its crystallization has followed that of arsenopyrite I. It usually shows subhedral to euhedral form and is closely associated with $l{\ddot{o}}llingite$, bismuth, bismuthinite, chalcopyrite, sphalerite, bismuthian tennantite, etc. It is worthy of note that arsenopyrite II occasionally contains particles consisting of both bismuth and bismuthinite. 3) Arsenopyrite III-(Ni, Co)-free, S-excess and As-deficient species is close to the stoichiometric composition, FeAsS. It occurs in late hydrothermal veins, which cut clearly the Fe-W ore pipe and the surrounding skarn zone. It shows euhedral to subhedral form, being extremely coarse-grained, and is closely associated with pyrite, "primary" monoclinic pyrrhotite, galena, sphalerite, etc. Among three species of the Ulsan arsenopyrite, arsenopyrite I does not serve as a geothermometer, because (Ni+Co) content always exceeds 1 weight percent. In spite of the absence of Fe-S minerals as sulphur-buffer assemblage, the presence of $Bi(l)-Bi_2S_3$ sulphur-buffer enables arsenopyrite II to apply successfully to the estimation of either temperature and sulphur fugacity, the results are, $T=460{\sim}470^{\circ}C$, and log $f(S_2)=-7.4{\sim}7.0$. With reference to arsenopyrite III, only arsenopyrite coexisting with pyrite and "primary" monoclinic pyrrhotite may serve to restrict the range of both temperature and sulphur fugacity, $T=320{\sim}440^{\circ}C$, log $f(S_2)=-9.0{\sim}7.0$. These temperature data are consistent with those obtained by fluid inclusion geothermometry on late grandite garnet somewhat earlier than arsenopyrite II. At the beginning of this paper, the geological environments of the ore formation at Ulsan are considered from regional and local geologic settings, and physicochemical conditions are suspected, in particular the formation pressure (lithostatic pressure) is assumed to be 0.5kb (50MPa). The present study on arsenopyrite geothermometry, however, does not bring about any contradictions against the above premises. Thus, the following genetical view on the Ulsan ore deposit previously advocated by two of the present authors (Choi and Imai) becomes more evident; the ore deposit was formed at shallow depth and relatively high-temperature with steep geothermal gradient-xenothermal conditions.

  • PDF

A Study on the Precipitation Mechanism of Quartz Veins from Sangdong Deposit by Analyses of Vein Texture and Trace Element in Quartz (상동광산 석영맥의 조직 및 석영의 미량원소 분석을 통한 광맥 침전 기작 도출)

  • Youseong Lee;Changyun Park;Yeongkyoo Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.239-257
    • /
    • 2023
  • Sangdong deposit, a W-Mo skarn deposit, is located in Taebaeksan mineralized district, hosting vertically developed scheelite-quartz veins that formed at the late ore-forming stage. In this study, we tried to examine the geochemical signatures of ore-forming fluids and vein-forming mechanisms by analyzing the micro-texture of quartz veins and trace element concentrations of quartz. As a result of texture analyses, quartz veins in the hanging wall orebody and the foot wall orebody commonly exhibit the blocky and the elongate blocky texture, respectively, whereas quartz veins in the main orebody show both textures. These textural differences indicate that quartz veins from the hanging wall orebody were precipitated by the primary hydrofracturing due to H2O saturation in the igneous body with relatively high temperature and pressure at a vein-skarn stage, and after that, repeated hydrofracturing caused the formation of quartz veins from the main orebody and foot wall orebody. The results of trace element concentrations show that Li++Al3+↔Si4+ is a main substitution mechanism. However, those of the foot wall orebody were clearly divided into a Li+-dominated substitution and a Na+-, K+-dominated substitution. Considering that quartz veins from the foot wall orebody commonly show the elongate blocky texture, such a distinction means that it is a result of repeated injections of fluid with the different composition. Ti concentrations of quartz from the hanging wall, main, and the foot wall orebody are 28.6, 8.2, and 15.7 ppm in average, respectively. Given a proportional relationship between the precipitation temperature and Ti concentrations, it seems that quartz veins from the hanging wall orebody were precipitated at the highest temperature. Al concentrations of the hanging wall, main, and the foot wall orebody having an inverse relationship with fluid pH are 162.3, 114.2, and 182.5 ppm in average, respectively. These results show that Al concentrations in vein-forming fluids were not changed dramatically. Moreover, these concentrations are extremely low in comparison with the other hydrothermal deposits. This indicates that quartz in overall ore veins at Sangdong deposit was precipitated from the constant condition with slightly acidic to near neutral pH.

Lead Isotopic Study on the Dongnam Fe-Mo Skarn Deposit (동남 스카른 광상에 대한 납 동위원소 연구)

  • Chang, Ho Wan;Cheong, Chang Sik;Park, Hee In;Chang, Byung Uck
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 1995
  • In Dongnam area, Cretaceous igneous rocks, such as diorite, porphyritic granite, and quartz porphyry intruded Paleozoic sedimentary rocks, such as Myobong slate and Pungchon limestone. The Dongnam Fe-Mo skarn deposits were imposed on the diorite(endoskarn) and the Myobong slate(exoskarn). The ore deposits consist mainly of magnetite and molybdenite with small amounts of sulfides, such as galena, sphalerite, pyrite, chalcopyrite, and pyrrhotite. The igneous rocks show nearly constant $^{206}Pb/^{204}Pb(18.80{\sim}19.06)$ and $^{207}Pb/^{204}Pb(15.71{\sim}15.72)$ ratios. Their $^{207}Pb/^{204}Pb$ ratios higher than the typical ratios of orogene suggest that the igeneous rocks were formed from lower crust(or mantle) - derived magma excessively contaminated by upper crustal materials such as high radiogenic Precambrian basement rocks. The lead isotopic compositions of the igneous rocks, the Pungchon limestone, and the ore minerals show a well defined linear in $^{206}Pb/^{204}Pb$ - $^{207}Pb/^{204}Pb$ plot. The lead isotopic compositions of the igneous rocks are similar to those of magnetite and galena, which were formed at early skarn stage and significantly lower than those of altered quartz porphyry, molybdenites, and pyrite, which were formed at late epithermal alteration stage. Considering the systematic variation of the lead isotopic compositions in the ore minerals according to hydrothermal stages, the variation may be due to a relative variation in surrounding rock(Pungchon limestone) involvement in hydrothermal ore solution leaching the surrounding rock. Therefore, the variation of the lead isotopic compositions in ore minerals can be modeled in terms of the mixing of the leads derived from the igneous rocks as low radiogenic source and the surrounding rock(Pungchon limestone) as high radiogenic source.

  • PDF

Occurrence of the Pb-Zn Skarn Deposits in Gukjeon Mine, Korea (국전 Pb-Zn 스카른 광상의 산출상태)

  • Yang, Chang-Moon;Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.413-428
    • /
    • 2010
  • The Gukjeon Pb-Zn mine was recognized as skarn deposits which replaced the limestone layer of the Jeongkansan Formation by intrusion of biotite granite in late Cretaceous. The Jeongkansan Formation is mainly composed of tuffaceous shale, and interlayers of sandstone, andesitic tuff, limestone, and conglomerate. The limestone layer is located in the lower part of the Jeongkansan Formation with 6~8 m in thickness and about 500 m in length. The Gukjeon deposits are divided into the Jukgang ore bodies once mined underground and the eastern ore bodies. Main ores are sphalerite and galena, in association with small amounts of chalcopyrite, arsenopyrite, pyrite, and pyrrhotite, etc. Skarns mainly consist of clinopyroxenes and Ca-garnets, associated with actinolite, chlorite, axinite, and calcite, etc. The Jukgang ore bodies show symmetrical distribution of zoning outward, representing clinopyroxene (hedenbergite) zone, clinopyroxene-garnet (grossular) zone, garnet (andradite) zone, and alteration zone of hornfels. $Fe^{2+}$ contents in clinopyroxenes increase with decreasing sphalerite grade. Sphalerite ores are found in all zones and $Fe^{2+}$ contents in sphalerite increase in the same way as those in clinopyroxenes, implying that clinopyroxene and sphalerite are closely related each other. It is concluded that the Gukjeon ores occurred in the ore rich zone of high grade sphalerite with less pyrite in assoication with clinopyroxene.

W-Sn-Bi-Mo Mineralization of Shizhuyuan deposit, Hunan Province, China (중국 호남성 시죽원 광상의 W-Sn-Bi-Mo광화작용)

  • 윤경무;김상중;이현구;이찬희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.179-189
    • /
    • 2002
  • The Geology of the Shizhuyuan W-Sn-Bi-Mo deposits, situated 16 Ian southeast of Chengzhou City, Hunan Province, China, consist of Proterozoic metasedimentary rocks, Devonian carbonate rocks, Jurassic granitic rocks, Cretaceous granite porphyry and ultramafic dykes. The Shizhuyuan polymetallic deposits were associated with medium- to coarse-grained biotite granite of stage I. According to occurrences of ore body, ore minerals and assemblages, they might be classified into three stages such as skarn, greisen and hydrothernlal stages. The skarn is mainly calcic skarn, which develops around the Qianlishan granite, and consists of garnet, pyroxene, vesuvianite, wollastonite, amphibolite, fluorite, epidote, calcite, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unidetified Bi- Te-S system mineral, magnetite, and hematite. The greisen was related to residual fluid of medium- to coarse-grained biotite granite, and is classified into planar and vein types. It is composed of quartz, feldspar, muscovite, chlorite, tourmaline, topaz, apatite, beryl, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unknown uranium mineral, unknown REE mineral, pyrite, magnetite, and chalcopyrite with minor hematite. The hydrothermal stage was related to Cretaceous porphyry, and consist of quartz, pyrite and chalcopyrite. Scheelite shows a zonal texture, and higher MoO) content as 9.17% in central part. Wolframite is WO); 71.20 to 77.37 wt.%, FeO; 9.37 to 18.40 wt.%, MnO; 8.17 to 15.31 wt.% and CaO; 0.01 to 4.82 wt.%. FeO contents of cassiterite are 0.49 to 4.75 wt.%, and show higher contents (4.]7 to 4.75 wt.%) in skarn stage (Stage I). Te and Se contents of native bismuth range from 0.00 to 1.06 wt.% and from 0.00 to 0.57 wt.%, respectively. Unidentified Bi-Te-S system mineral is Bi; 78.62 to 80.75 wt.%, Te; 12.26 to 14.76 wt.%, Cu; 0.00 to 0.42 wt.%, S; 5.68 to 6.84 wt.%, Se; 0.44 to 0.78 wt.%.

Fluid Inclusion Study of Sangdong Tungsten Deposits (상동(上東) 중석광상(重石鑛床)의 유체포유물(流體包有物) 연구(硏究))

  • Mun, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.12 no.4
    • /
    • pp.197-206
    • /
    • 1979
  • Sangdong scheelite deposit is confirmed to have been formed by replacement of limestone beds by metasomatic mineralization. Mineralogical zonal distribution and filling temperatures are related with order of its formation and tungsten mineralization. The first formed garnet-pyroxene zone, left in the margins of the ore body, shows the highest filling temperature of fluid inclusions in pyroxene, averaging $420^{\circ}C$. The central part of the ore body, mainly composed of quartz-mica-scheelite, shows higher fi11ing temperatures of fluid inclusions in quartz, than hornblende-quartz-scheelite zone surrounding the quartz-mica-scheelite zone, averaging $240^{\circ}C$. The distribution of highter filling temperatures above average temperature is applicable to the richest part of scheelite distribution. Generally scheelite shows higher filling temperature by about 20 to $100^{\circ}C$ than quartz in a given sample. The crystallization temperature of the main phase of scheelite deposition is $311^{\circ}C$ at the pressure of 230 to 500 bars at Sangdong area. Gas-rich inclusions in the pyroxene are homogenized into either gas or liquid phase or into both phases in a given crystal of the pyroxene, which suggests boiling at the formation of skarn.

  • PDF

A Geochemical Study on Trace Elements in the Granitic Rocks in relation to Mineralization in the Limestone Area of the Taebaegsan Basin (화강암류중 미량원소와 태백산분지내 석회암지역 광화작용과의 지구화학적 관계)

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.20 no.3
    • /
    • pp.179-196
    • /
    • 1987
  • Various skarn ore deposits of Pb-Zn, Fe-Cu, W-Mo and others are widely distributed in the study area which consists mainly of Cambro Ordovician calcareous rocks. The ore deposits are all in close association with specific types of granitic rocks of mid-late Cretaceous age according to the kinds of ores: Fe-Cu deposit with granodiorite-quartz monzodiorite, Pb-Zn deposit with granite-granodiorite, W-Mo deposit with granite, and Mn deposit with quartz porphyry. The granitic rock of Fe-Cu deposit has lower content in K and higher in Ca than those of Pb-Zn deposits. On the contrary, the granitic rock of W-Mo deposit has much higher content in K and lower in Ca in comparison to those of Pb-Zn deposits. However, the granitic rock of Mn deposit shows similar variation to those of Pb-Zn deposits. Lithophile trace elements of Sr and Rb tend to vary in close relation with major elements of K and Ca, respectively. In good contrast, chalcophile elements of Cu, Pb, Zn, Wand Mo are enriched in the granitic rocks of their ore deposits, and other trace elements of Ni and Co show a trend to vary in relation with Mg, Fe and Cu, which have the same replacement index (0.14) as Ni and Co. Average K/Rb and Ca/Sr ratios of the granitic rocks range nearly within 300~150 and 150~40, respectively, and the distribution pattern of the ratios is different according to the kind of ore deposits: Fe-Cu deposit is plotted toward K-Rb poor region whereas Pb-Zn and W-Mo deposits toward K-Rb rich region. In contrast, Fe-Cu and Fe deposits are plotted toward Ca-Sr rich region whereas Pb-Zn deposit toward Ca-Sr poor region. The variation trend of chemical elements of the mid-late Cretaceous granitic rocks in the study area is similar to that of the Cretaceous granitic rocks in the Gyeongsang Basin. Therefore, this geochemical result may be applicable to determining what kinds of ore deposits a Cretaceous granitic rock is favourable for, and whether it is productive or non-productive for systematic geochemical exploration works.

  • PDF

Microscopic Study of Sangdong Tungsten Ore Deposit, Korea (상동중석광상(上東重石鑛床)의 현미경적(顯微鏡的) 연구(硏究))

  • Lee, Dai Sung;Kim, Suh-Woon
    • Economic and Environmental Geology
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 1969
  • In the Sangdong Mine area, Taebaegsan series (Pre-Cambrian) and Chosun System (Cambro-ordovician) are widely distributed. The Chosun System consists of Yangdug Series (Jangsan Quartzite and Myobong Slate) and The Great Limestone Series (Pungchon Limestone, Shesong Shale, Hwajeol Formation and Dongjeom Quartzite). The mineralized zone containing the main ore body of the Sangdong Mine was developed in the Myobong Slate formation. The result of the field and microscopic study on the mineral paragenesis and it's wall rock alteration in the tungsten ore deposit shows the following features. The orogenic movements of the Post-Chosun System in the Hambaeg Geosyncline are closely related to the tungsten ore deposition in the area, the ore minerals are composed mainly of scheelite, powelite molybdenite and sulfide minerals, and gangue minerals are hornblende, diopside, garnet, quartz, phlogopite, tremolite, biotite, muscovite, fluorite, etc., main ore body was enriched by scheelite bearing quartz vein filling into interstices of formerly mineralized zones, and the minor faults, faults of N $60^{\circ}-70^{\circ}W$, $45^{\circ}-60^{\circ}NE$ and joints, which were formed at the end of the mineralization and the slate. Country rock of the ore body was altered into the following several zones from the outside to the inside; lowgrade recrystalline aureole, silicified sericite zone, and diopside-hornblende zone. Under the microscopic observation of 195 samples taken from throughout ore body can be classified into 10 different groups by their mineral paragenesis as shown in table 2. The garnet-diopside group is primary skarn and it shows gradational change to the groups of later stage by the successive processes of metasomatism. From the stage of quartz-bearing group, the dissemination of scheelite is seen. The crystallization of scheelite in the bed started with the quartz deposition and continued to the last stage when quartz vein intruded into the main ore body. In the field and the under ground investigation a durable limestone bed in thickeness about 20 meters and their remnants in ore body are observed and under microscope calcite remnants are recognized. Hence it is posturated that the ore material moved up through the faults, shear zones or feather cracks and was assimilated with the interbeded limestone, after that the body was affected by the successive differentiated ore solution by gradational increasing in $SiO_2$, $K_2O$ and $H_2O$. Evidently this ore deposit shows the features resulted from pyrometasomatic processes.

  • PDF

Preliminary Study on the Formation Environment of Serpentinite occurring in Ulsan Area (울산지역 사문암의 형성환경 해석을 위한 예비연구)

  • Koh, Sang-Mo;Park, Choong-Ku;Soh, Won-Ju
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.325-336
    • /
    • 2006
  • Domestic serpentinite is one of the important industrial minerals utilizing in the iron manufacturing company such as POSCO in Korea. Serpentinite is distributed in the Ulsan Fe deposit, Andong, Hongseong-Cheongyang, and Gapyeong areas. This study tries to interpret the relationship among the formation of carbonate rocks, iron mineralization, and serpentinite alteration throughout the study of field occurrence, mineralogy, and chemical compositions. Serpentine is formed by the break-down of olivine and pyroxene of parent peridotite. The serpentinization is inferred to be formed by the hydrothermal fluid derived from intruded Cretaceous granite and the addition of meteoric water. Variation of major oxides such as $SiO_2,\;Fe_2O_3$, and MgO in serpentinized rocks are controlled by the degree of serpentinization and Fe mineralization. Variation of $Al_2O_3$ and CaO contents of altered rocks is dependent on the amount of the residual minerals such as calcite and homblende, and on the degree of chloritization. The presence of carbonate rocks reported in the sedimentary origin or igneous origin (carbonatite) provided a geological environment to form skarn type Fe deposit regardless of its origin. The geological processes of Ulsan Fe deposits are inferred to be formed as the order of the formation of carbonate rocks ${\to}$ the intrusion of Cretaceous granite ${\to}$ serpentinization ${\to}$ Fe mineralization by the interprelation of field occurrence and mineralogical characteristics.

Study on the Metallogenic Classification Relating to Igneous Activity in the Ogcheon Geosynclinal Zone, Korea (옥천지향사대(沃川地向斜帶)의 화성활동(火成活動)에 의한 광화작용(鑛化作用)의 유형(類型)에 관(關)한 연구(硏究))

  • Lee, Dai Sung;Chi, Jeong Mann;Lee, Dai Woon
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.167-184
    • /
    • 1980
  • The granitic plutons associated with Ogcheon geosynclinal zone can be grouped into three different subzones; SE-Subzone for the migmatitic and schistose granites of the southeast margin, 101-181m.y. old; NW-Subzone for those of the northwest margin, 112-163m. y. old; and C-Subzone for those of central part of the zone, 63-183m.y. old. The intrusives in C-Subzone are further subdivided into the older, adamellite to granodiorite (148-183m.y. old) and the younger, perthitic granites (63-106m,y. old). The metallogenic distribution of South Korea suggests that, in the Ogcheon Zone, it is possible to delineate an elongated polymetallogenic province in the general orientation of the zone intimately related with the migmatite and plutonic zones mentioned. Moreover, the mineralization in the province was basically controlled by the patterns of local geology involving country rocks and related igneous bodies, that permit subdivision of the province into the following three parts: Northeast (NE) Province consists dominantly of thick Paleozoic calcareous sediments; Middle (M) Province is characterized by predominant argillaceous and partly calcareous sediments of Precambrian to Late Paleozoic age; and Southwest (SW) Province consisting mainly of volcanic and arenaceous sediments of Mesozoic age. The three different plutonic zones with three different country rock provinces above mentioned make a combination which consists of nine classes. Each class can be assumed to be characterized by specific mineralization type. In order to classify the mineralization types, the present study sampled twenty six ore deposits and mineralized areas in Ogcheon zone as shown figure 2; eight ore deposits from plutonic SE-Subzone, ten from the plutonic NE-Subzone and eight from the plutonic C-Subzone. The characteristics of the classes are as follows: NE-SE is predominant in Au-Ag vein and Sn-migmatite of katazonal occurrence; NE-C is most productive in Pb-Zn and remarkable in Fe contact deposit in mesozone and partly Pb-Zn-Cu skarn in limestone and subordinate in mesozone and partly Pb-Zn pipes; M-SE is considerable in Au-Ag vein and rare elements (Nb, Ta, etc.) of pegmatite; M-C is predominant in F-veins in epizone and Mo-W, Fe, Cu veins occur in replacement type; M-NW is productive in Fe metamorphic and skarn types, partly remarkable in Cu, Pb-Zn contact; SW-SE is barren in mineralization related to Jurassic igneous rocks; SW-C is predominant in alunite and pyrophyllite in tuffs; and SW-NW is scarece in Pb-Zn, Cu, As and Au-Ag veins.

  • PDF