DOI QR코드

DOI QR Code

A Study on the Precipitation Mechanism of Quartz Veins from Sangdong Deposit by Analyses of Vein Texture and Trace Element in Quartz

상동광산 석영맥의 조직 및 석영의 미량원소 분석을 통한 광맥 침전 기작 도출

  • Youseong Lee (Department of Geology, Kyungpook National University) ;
  • Changyun Park (Department of Geology, Kyungpook National University) ;
  • Yeongkyoo Kim (Department of Geology, Kyungpook National University)
  • Received : 2023.04.22
  • Accepted : 2023.06.06
  • Published : 2023.06.28

Abstract

Sangdong deposit, a W-Mo skarn deposit, is located in Taebaeksan mineralized district, hosting vertically developed scheelite-quartz veins that formed at the late ore-forming stage. In this study, we tried to examine the geochemical signatures of ore-forming fluids and vein-forming mechanisms by analyzing the micro-texture of quartz veins and trace element concentrations of quartz. As a result of texture analyses, quartz veins in the hanging wall orebody and the foot wall orebody commonly exhibit the blocky and the elongate blocky texture, respectively, whereas quartz veins in the main orebody show both textures. These textural differences indicate that quartz veins from the hanging wall orebody were precipitated by the primary hydrofracturing due to H2O saturation in the igneous body with relatively high temperature and pressure at a vein-skarn stage, and after that, repeated hydrofracturing caused the formation of quartz veins from the main orebody and foot wall orebody. The results of trace element concentrations show that Li++Al3+↔Si4+ is a main substitution mechanism. However, those of the foot wall orebody were clearly divided into a Li+-dominated substitution and a Na+-, K+-dominated substitution. Considering that quartz veins from the foot wall orebody commonly show the elongate blocky texture, such a distinction means that it is a result of repeated injections of fluid with the different composition. Ti concentrations of quartz from the hanging wall, main, and the foot wall orebody are 28.6, 8.2, and 15.7 ppm in average, respectively. Given a proportional relationship between the precipitation temperature and Ti concentrations, it seems that quartz veins from the hanging wall orebody were precipitated at the highest temperature. Al concentrations of the hanging wall, main, and the foot wall orebody having an inverse relationship with fluid pH are 162.3, 114.2, and 182.5 ppm in average, respectively. These results show that Al concentrations in vein-forming fluids were not changed dramatically. Moreover, these concentrations are extremely low in comparison with the other hydrothermal deposits. This indicates that quartz in overall ore veins at Sangdong deposit was precipitated from the constant condition with slightly acidic to near neutral pH.

상동 텅스텐(W)-몰리브덴(Mo) 광산은 태백산 광화대에 위치하는 스카른 광상으로, 광화 작용 최후기에 수직적 분포양상을 보이는 회중석-석영맥을 산출한다. 본 연구에서는 이 석영맥의 조직 관찰과 LA-ICPMS를 통한 석영의 미량원소 함량 분석을 통해 석영맥을 형성한 유체의 조성 및 이들의 침전 기작에 대해 파악하고자 하였다. 석영맥 조직 관찰 결과, 상동광산의 상반맥과 하반맥에서는 각각 괴상조직과 신장형 괴상조직이 주로 발달하고, 본맥에서는 두가지 조직이 모두 관찰된다. 이러한 석영맥의 조직적 특징으로 볼 때, 괴상조직을 나타내는 상반맥의 석영맥은 맥상스카른 형성 단계에서 화성암체의 H2O 포화로 인한 수압 파쇄작용들 중 초기에 발생한 작용에 의해 침전되었고, 신장형 괴상조직을 나타내는 본맥과 하반맥의 석영맥은 상반맥의 석영맥 형성 이후 발생한 반복적 수압파쇄작용에 의해 형성된 것으로 생각된다. 석영의 미량원소 분석 결과 대부분 Li+ +Al3+↔Si4+의 치환관계를 만족하지만, 하반맥에서는 Li+이 우세하게 치환되는 경우와, Na+과 K+이 우세하게 치환되는 경우로 뚜렷하게 구분된다. 이는 하반맥의 신장형 괴상조직에 기반하여, 서로 다른 조성을 가지는 유체의 반복적 유입에 의한 결과로 해석된다. 석영의 Ti 함량은 상반맥, 본맥, 그리고 하반맥에서 각각 평균 28.6, 8.2, 그리고 15.7 ppm이며, 침전온도와 Ti 함량이 비례관계를 가진다는 점에서, 상반맥의 석영맥이 가장 고온환경에서 침전된 것으로 고려된다. 유체의 pH와 반비례관계를 가지는 석영의 Al 함량은 상반맥, 본맥, 그리고 하반맥에서 각각 평균 162.3, 114.2, 그리고 182.5 ppm으로 큰 차이를 보이지 않으며, 타 열수 광산들의 석영과 비교하여 매우 낮은 함량을 나타낸다. 이는 상동광산의 석영맥을 구성하는 석영 및 회중석이 약산성 내지 중성의 비교적 일정한 pH조건에서 침전되었음을 지시한다.

Keywords

Acknowledgement

이 연구는 2021학년도 경북대학교 신임교수정착연구비에 의하여 수행되었다. 논문의 질적 향상을 위해 유익한 조언을 주신 두 익명의 심사위원께 감사를 표한다.

References

  1. Bons, P.D. (2001) Development of crystal morphology during unitaxial growth in a progressively widening vein: I. The numerical model. Journal of Structural Geology, v.23(6-7), p.865-872. doi: 10.1016/S0191-8141(00)00159-0.
  2. Bons, P.D. (2000) The formation of veins and their microstructures. Journal of the Virtual Explorer, v.2, 12. doi: 10.3809/jvirtex.2000.00007
  3. Bons, P.D., Elburg, M.A. and Gomez-Rivas, E. (2012) A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology, v.43, p.33-62. doi: 10.1016/j.jsg.2012.07.005.
  4. Burnham, C.W. (1979) Magmas and hydrothermal fluids. In Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits. 2nd (ed.), John Wiley & Sons, p.71-136.
  5. Breiter, K., Badanina, E., Durisova, J., Dosbaba, M. and Syritso, L. (2019) Chemistry of quartz-a new insight into the origin of the Orlovka Ta-Li deposit, Eastern Transbaikalia, Russia. Lithos, v.348. doi: 10.1016/j.lithos.2019.105206.
  6. Carter, L.C. and Williamson, B.J. (2022) Textural indicators of mineralisation potential in porphyry magmatic systems-A framework from the archetypal Yerington district, Nevada. Ore Geology Reviews, 143. doi: 10.1016/j.oregeorev.2022.104783.
  7. Choi, S.-G., Choi, B.-K., Ahn, Y.-H. and Kim, T.-H. (2009) Reevaluation of genetic environments of zinc-lead deposits to predict hidden skarn orebody. Economic and Environmental Geology, v.42(4), p.301-314.
  8. Choi, W., Park, C., Song, Y., Park, C., Kim, H. and Lee, C. (2020) Sequential scheelite mineralization of Quartz-cheelite veins at the Sangdong W-deposit: Microtextural and geochemical approach. Minerals, v.10(8), 678. doi: 10.3390/min10080678.
  9. Cox, S.F., Etheridge, M.A. and Wall, V.J. (1987) The role of fluids in syntectonic mass transport, and the localization of metamorphic vein-type ore deposists. Ore Geology Reviews, v.2(1-3), p.65-86. doi: 10.1016/0169-1368(87)90024-2.
  10. Farrar, E., Clark, A.H. and Kim, O.J. (1978) Age of the Sangdong tungsten deposit, Republic of Korea, and its bearing on the metallogeny of the southern Korean Peninsula. Economic Geology, v.73(4), p.547-552, doi: 10.2113/gsecongeo.73.4.547.
  11. Fisher, D.M. and Brantley, S.L. (1992) Models of quartz overgrowth and vein formation: deformation and episodic fluid flow in an ancient subduction zone. Journal of Geophysical Research: Solid Earth, v.97(B13), p.20043-20061. doi: 10.1029/92JB01582.
  12. Fisher, D.M., Brantley, S.L., Everett, M. and Dzvonik, J. (1995) Cyclic fluid flow through a regionally extensive fracture network within the Kodiak accretionary prism. Journal of Geophysical Research: Solid Earth, v.100(B7), p.12881-12894. doi: 10.1029/94JB02816.
  13. Flem, B. and Muller, A. (2012) In situ analysis of trace elements in quartz using laser ablation inductively coupled plasma mass spectrometry. Quartz: Deposits, Mineralogy and Analytics, p.219-236. doi: 10.1007/978-3-642-22161-3_10.
  14. Fu, S., Lan, Q. and Yan, J. (2020) Trace element chemistry of hydrothermal quartz and its genetic significance: A case study from the Xikuangshan and Woxi giant Sb deposits in southern China. Ore Geology Reviews, 126. doi: 10.1016/j.oregeorev.2020.103732.
  15. Gao, S., Zou, X., Hofstra, A.H., Qin, K., Marsh, E.E., Bennett, M.M., Li, G., Jiang, J., Su, S., Zhao, J. and Li, Z. (2022) Trace elements in quartz: Insights into source and fluid evolution in magmatic-hydrothermal systems. Economic Geology, v.117(6), p.1415-1428. doi: 10.5382/econgeo.4943.
  16. Gotze, J. (2009) Chemistry, textures and physical properties of quartz-geological interpretation and technical application. Mineralogical Magazine, v.73(4), p.645-671. doi: 10.1180/minmag.2009.073.4.645.
  17. Gotze, J. (2012) Quartz: Deposits, mineralogy and analytics. In Mockel, R. (ed.) Berlin: Springer, p.287-306.
  18. Gotze, J., Pan, Y. and Muller, A. (2021) Mineralogy and mineral chemistry of quartz: A review. Mineralogical Magazine, v.85(5), p.639-664. doi: 10.1180/mgm.2021.72.
  19. Gustafson, L.B. and Hunt, J.P. (1975) The porphyry copper deposit at El Salvador, Chile. Economic Geology, v.70(5), p.857-912. doi: 10.2113/gsecongeo.70.5.857.
  20. Hilgers, C., Dilg-Gruschinski, K. and Urai, J.L. (2004) Microstructural evolution of syntaxial veins formed by advective flow. Geology, v.32(3), p.261-264. doi: 10.1130/G20024.1.
  21. Huang, R. and Audetat, A. (2012) The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration. Geochimica et Cosmochimica Acta, v.84, p.75-89. doi: 10.1016/j.gca.2012.01.009.
  22. Kang, J., Choi, S.G., Seo, J., Kim, S.T., Kim, G.B., Cho, S.J., Lee, G. and Lee, Y.J. (2022) A genetic model of the giant Sangdong W-Mo skarn deposit in the Taebaeksan Basin, South Korea. Ore Geology Reviews. doi: 10.1016/j.oregeorev.2022.105187.
  23. Kim, K.H. (1986) Petrology and petrochemistry of Sangdong granite. Unpubl (M. S. thesis, University of Kyungpook, 79p).
  24. Kim, K.H., Kim, O.J., Nakai, N. and Lee, H.J. (1988) Stable isotope studies of the Sangdong tungsten ore deposits, South Korea. Mining Geology, v.38(212), p.473-487. doi: 10.11456/shigenchishitsu1951.38.473.
  25. Leach, T.M. and Muchemi, G.G. (1987) Geology and hydrothermal alteration of the north and west exploration wells in the Olkaria geothermal field, Kenya. In Proceedings of the 9th New Zealand Geothermal Workshop, p.187-192.
  26. Liu, X., Xiao, C. and Wang, Y. (2021) The relative solubilities of wolframite and scheelite in hydrothermal fluids: Insights from thermodynamic modeling. Chemical Geology, 584. doi: 10.1016/j.chemgeo.2021.120488.
  27. Liu, X.H., Xu, J.W., Lai, J.Q., Song, X.F., He, H.S., Zhang, L.J., Shi, J., Zhou, X., Liao, J., Cao, Y.H. and Li, B. (2022) Genetic significance of trace elements in hydrothermal quartz from the Xiangzhong metallogenic province, South China. Ore Geology Reviews. doi: 10.1016/j.oregeorev.2022.105229.
  28. Luo, K., Zhou, J.X., Huang, Z.L., Caulfield, J., Zhao, J.X., Feng, Y.X. and Ouyang, H. (2020) New insights into the evolution of Mississippi Valley-Type hydrothermal system: A case study of the Wusihe Pb-Zn deposit, South China, using quartz in-situ trace elements and sulfides in situ S-Pb isotopes. American Mineralogist, v.105(1), p.35-51. doi: 10.2138/am-2020-7021.
  29. Monecke, T., Kempe, U. and Gotze, J. (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth and Planetary Science Letters, v.202(3-4), p.709-724. doi: 10.1016/S0012-821X(02)00795-1.
  30. Moon, K.J. (1983) The genesis of the Sangdong tungsten deposit, the Republic of Korea (Ph.D. thesis, University of Tasmania, 153p).
  31. Moon, K.J. (1986) Comparative Study of Geochemistry of the Sangdong Skarn Orebody in a Large Scale and Small Scales. Economic and Environmental Geology, v.19(5), p.113-119.
  32. Moon, K.J. (1987) Significance of the occurrences of the Sangdong granite and scheelite-bearing quartz veins in the Precambrian schist. Journal of the Geological Society of Korea, v.23(4), p.306-316.
  33. Moon, K.J. (1991) Application of fluid inclusions in mineral exploration. Journal of Geochemical Exploration, v.42(1), p.205-221. doi: 10.1016/0375-6742(91)90068-6.
  34. Muller, A., Wiedenbeck, M., Kerkhof, A.M.V.D., Kronz, A. and Simon, K. (2003) Trace elements in quartz-a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. European Journal of Mineralogy, v.15(4), p.747-763. doi: 10.1127/0935-1221/2003/0015-0747.
  35. Nollet, S., Urai, J.L., Bons, P.D. and Hilgers, C. (2005) Numerical simulations of polycrystal growth in veins. Journal of Structural Geology, v.27(2), p.217-230. doi: 10.1016/j.jsg.2004.10.003.
  36. Oliver, N.H. and Bons, P.D. (2001) Mechanisms of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure. Geofluids, v.1(2), p.137-162. doi: 10.1046/j.1468-8123.2001.00013.x.
  37. Pearce, N.J., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. and Chenery, S.P. (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, v.21(1), p.115-144. doi: 10.1111/j.1751-908X.1997.tb00538.x.
  38. Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J. and Pankrath, R. (1992) Microdistribution of Al, Li, and Na in α quartz: Possible causes and correlation with short-lived cathodoluminescence. American Mineralogist, v.77(5-6), p.534-544.
  39. Peterkova, T. and Dolejs, D. (2019) Magmatic-hydrothermal transition of Mo-W-mineralized granite-pegmatite-greisen system recorded by trace elements in quartz: Krupka district, Eastern Krusne hory/Erzgebirge. Chemical Geology, v.523, p.179-202. doi: 10.1016/j.chemgeo.2019.04.009.
  40. Qiu, K.F., Deng, J., Yu, H.C., Wu, M.Q., Wang, Y., Zhang, L. and Goldfarb, R. (2021) Identifying hydrothermal quartz vein generations in the Taiyangshan porphyry Cu-Mo deposit (West Qinling, China) using cathodoluminescence, trace element geochemistry, and fluid inclusions. Ore Geology Reviews, 128. doi: 10.1016/j.oregeorev.2020.103882.
  41. Ramsay, J.G. (1980) The crack-seal mechanism of rock deformation. Nature, v.284, p.135-139. doi: 10.1038/284135a0.
  42. Redmond, P.B. and Einaudi, M.T. (2010) The Bingham Canyon porphyry Cu-Mo-Au deposit. I. Sequence of intrusions, vein formation, and sulfide deposition. Economic Geology, v.105, p.43-68. doi: 10.2113/gsecongeo.105.1.43.
  43. Rottier, B. and Casanova, V. (2021) Trace element composition of quartz from porphyry systems: a tracer of the mineralizing fluid evolution. Mineralium Deposita, v.56, p.843-862. doi: 10.1007/s00126-020-01009-0.
  44. Rusk, B. (2012) Cathodoluminescent textures and trace elements in hydrothermal quartz. Quartz: Deposits, Mineralogy and Analytics, p.307-329. doi: 10.1007/978-3-642-22161-3_14.
  45. Rusk, B.G., Lowers, H.A. and Reed, M.H. (2008) Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology, v.36(7), p.547-550. doi: 10.1130/G24580A.1.
  46. Schron, W., Schmadicke, E., Thomas, R. and Schmidt, W. (1988) Geochemische Untersuchungen an Pegmatitquarzen. Zeitschrift Fur Geologische Wissenschaften, v.16(3), p.229-244.
  47. Seo, J.H., Yoo, B.C., Villa, I.M., Lee, J.H., Lee, T., Kim, C. and Moon, K.J. (2017) Magmatic-hydrothermal processes in Sangdong W-Mo deposit, Korea: Study of fluid inclusions and 39Ar-40Ar geochronology. Ore Geology Reviews, v.91, p.316-334. doi: 10.1016/j.oregeorev.2017.09.019.
  48. Shimizu, T. (2014) Reinterpretation of quartz textures in terms of hydrothermal fluid evolution at the Koryu Au-Ag deposit, Japan. Economic Geology, v.109(7), p.2051-2065. doi: 10.2113/econgeo.109.7.2051.
  49. Sillitoe, R.H. (2010) Porphyry copper systems. Economic Geology, v.105(1), p.3-41. doi: 10.2113/gsecongeo.105.1.3.
  50. Thomas, J.B., Bruce Watson, E., Spear, F.S., Shemella, P.T., Nayak, S.K. and Lanzirotti, A. (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, v.160(5), p.743-759. doi: 10.1007/s00410-010-0505-3.
  51. Wark, D.A. and Watson, E.B. (2006) TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, v.152(6), p.743-754. doi: 10.1007/s00410-006-0132-1.
  52. Weil, J.A. (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Physics and Chemistry of Minerals, v.10(4), p.149-165. doi: 10.1007/BF00311472.
  53. Woodcock, N.H., Dickson, J.A.D. and Tarasewicz, J.P.T. (2007) Transient permeability and reseal hardening in fault zones: evidence from dilation breccia textures. Geological Society, London, Special Publications, v.270(1), p.43-53. doi: 10.1144/GSL.SP.2007.270.01.03.
  54. Zhang, Y., Cheng, J., Tian, J., Pan, J., Sun, S., Zhang, L., Zhang, S., Chu, G., Zhao, Y. and Lai, C. (2019) Texture and trace element geochemistry of quartz in skarn system: Perspective from Jiguanzui Cu-Au skarn deposit, Eastern China. Ore Geology Reviews, v.109, p.535-544. doi: 10.1016/j.oregeorev.2019.05.007