• Title/Summary/Keyword: skarn

Search Result 109, Processing Time 0.02 seconds

Lead Isotopic Study on the Dongnam Fe-Mo Skarn Deposit (동남 스카른 광상에 대한 납 동위원소 연구)

  • Chang, Ho Wan;Cheong, Chang Sik;Park, Hee In;Chang, Byung Uck
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 1995
  • In Dongnam area, Cretaceous igneous rocks, such as diorite, porphyritic granite, and quartz porphyry intruded Paleozoic sedimentary rocks, such as Myobong slate and Pungchon limestone. The Dongnam Fe-Mo skarn deposits were imposed on the diorite(endoskarn) and the Myobong slate(exoskarn). The ore deposits consist mainly of magnetite and molybdenite with small amounts of sulfides, such as galena, sphalerite, pyrite, chalcopyrite, and pyrrhotite. The igneous rocks show nearly constant $^{206}Pb/^{204}Pb(18.80{\sim}19.06)$ and $^{207}Pb/^{204}Pb(15.71{\sim}15.72)$ ratios. Their $^{207}Pb/^{204}Pb$ ratios higher than the typical ratios of orogene suggest that the igeneous rocks were formed from lower crust(or mantle) - derived magma excessively contaminated by upper crustal materials such as high radiogenic Precambrian basement rocks. The lead isotopic compositions of the igneous rocks, the Pungchon limestone, and the ore minerals show a well defined linear in $^{206}Pb/^{204}Pb$ - $^{207}Pb/^{204}Pb$ plot. The lead isotopic compositions of the igneous rocks are similar to those of magnetite and galena, which were formed at early skarn stage and significantly lower than those of altered quartz porphyry, molybdenites, and pyrite, which were formed at late epithermal alteration stage. Considering the systematic variation of the lead isotopic compositions in the ore minerals according to hydrothermal stages, the variation may be due to a relative variation in surrounding rock(Pungchon limestone) involvement in hydrothermal ore solution leaching the surrounding rock. Therefore, the variation of the lead isotopic compositions in ore minerals can be modeled in terms of the mixing of the leads derived from the igneous rocks as low radiogenic source and the surrounding rock(Pungchon limestone) as high radiogenic source.

  • PDF

Skarnization and Fe Mineralization at the Western Orebody in the Manjang Deposit, Goesan (만장광상 서부광체의 철스카른화 작용 및 생성환경)

  • Lim, Euddeum;Yoo, Bongchul;Shin, Dongbok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.141-153
    • /
    • 2016
  • The Manjang deposit is emplaced in Hwajeonri formation comprising limestone that is interbeded with slate and phyllite in the central Okcheon Group. It consists of the Main and the Central orebody of Cu-bearing hydrothermal vein deposit and the Western orebody of iron skarn deposit. Based on coexisting mineral assemblage the skarnization can be divided into prograde skarnization (stage I : clinopyroxene ${\pm}$ magnetite ${\pm}$ quartz, stage II : garnet + clinopyroxene ${\pm}$ magnetite ${\pm}$ quartz) and retrograde hydrothermal alteration (stage III: magnetite + amphibole + quartz ${\pm}$ garnet ${\pm}$ clinopyroxene ${\pm}$ chlorite ${\pm}$ epidote ${\pm}$ fluorite ${\pm}$ calcite, stage IV: fluorite ${\pm}$ pyrrhotite ${\pm}$ chalcopyrite ${\pm}$ amphibole ${\pm}$ quartz ${\pm}$ calcite). Diopside is abundant in stage I, and hedenbergite was produced in stage II and III. Garnet compositions change from grandite to andradite, which suggests a redox transition from relatively reduced to oxidized condition during the skarn formation. Magnetite in stage I and II has relatively constant Fe contents, while in the stage III it has increased Si and Ca concentrations. This variation could indicate that magnetite was more strongly affected by host rocks during the retrograde stage. Sulfur isotope compositions of pyrrhotite and chalcopyrite produced in stage IV are within the range of + 5.9~6.9 ‰, corresponding to igneous origin, but slightly high sulfur isotope values could be attributed to an interaction with host rocks, limestone.

Occurrence of the Pb-Zn Skarn Deposits in Gukjeon Mine, Korea (국전 Pb-Zn 스카른 광상의 산출상태)

  • Yang, Chang-Moon;Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.413-428
    • /
    • 2010
  • The Gukjeon Pb-Zn mine was recognized as skarn deposits which replaced the limestone layer of the Jeongkansan Formation by intrusion of biotite granite in late Cretaceous. The Jeongkansan Formation is mainly composed of tuffaceous shale, and interlayers of sandstone, andesitic tuff, limestone, and conglomerate. The limestone layer is located in the lower part of the Jeongkansan Formation with 6~8 m in thickness and about 500 m in length. The Gukjeon deposits are divided into the Jukgang ore bodies once mined underground and the eastern ore bodies. Main ores are sphalerite and galena, in association with small amounts of chalcopyrite, arsenopyrite, pyrite, and pyrrhotite, etc. Skarns mainly consist of clinopyroxenes and Ca-garnets, associated with actinolite, chlorite, axinite, and calcite, etc. The Jukgang ore bodies show symmetrical distribution of zoning outward, representing clinopyroxene (hedenbergite) zone, clinopyroxene-garnet (grossular) zone, garnet (andradite) zone, and alteration zone of hornfels. $Fe^{2+}$ contents in clinopyroxenes increase with decreasing sphalerite grade. Sphalerite ores are found in all zones and $Fe^{2+}$ contents in sphalerite increase in the same way as those in clinopyroxenes, implying that clinopyroxene and sphalerite are closely related each other. It is concluded that the Gukjeon ores occurred in the ore rich zone of high grade sphalerite with less pyrite in assoication with clinopyroxene.

Geochemistry of Main Gangue Minerals at the Sangdong Tungsten Deposit (상동(上東) 중석광상(重石鑛床)의 주맥석(主脈石) 광물(鑛物)에 대(對)한 지화학(地化學))

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.79-90
    • /
    • 1984
  • Microprobe analyses have disclosed geochemical compositions of the main components such as garnet, pyroxene, amphibole, chlorite, biotite, and muscovite in the Sangdong W skarn deposit and this study has identified several minerals which were previously unrecorded from this deposit; they are scapolite, zeolite, K-feldspar, rutile. illite and apophyllite. The $Fe^{+3}/Fe^{+2}$ or Mg/(Mg+Fe) ratios of coexisting minerals represents that these minerals were partially in equilibrium.

  • PDF

A Mineralogical Study of the Skarn Minerals from the Shinyemi Lead-Zinc Ore Deposits, Korea (신예미(新禮美) 연(鉛)-아연광상산(亞鉛鑛床産) 스카른광물(鑛物)의 광물학적(鑛物學的) 연구(硏究))

  • Kim, Kyu Han;Nakai, Nobuyuki;Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.14 no.4
    • /
    • pp.167-182
    • /
    • 1981
  • Skarn silicates from the Shinyemi lead-zinc ore deposits can be distinguished as following three mineral assemblages: 1) garnet-pyroxene-phlogopite-wollastonite assemblages, 2) garnet-pyroxene assemblages, 3) garnet-epidote assemblages The assemblages are considered to be related with occurrences and kindes of ore minerals, and stage of mineralization in the deposits. Microprobe analyses of some garnets from the deposits show strong chemical zoning which is due to the changing equilibrium condition during growth of garnet crystal. Depositional condition of ore deposits and place of the ore-related igneous rock are discussed in the light of chemical composition of garnet and occurence of skarns in the Shinyemi.

  • PDF

Ore Genesis of the Yonchon Titaniferous Iron Ore Deposits, South Korea (연천 함티타늄 자철광상의 성인)

  • Kim, Kyu Han;Lee, Hyun Joo;Chon, Hyo Taek
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.117-130
    • /
    • 1994
  • Titanomagnetite ore bodies in the Yonchon iron mine are closely associated with alkali gabbroic rocks of middle Proterozoic age which intruded Precambrian metasedimentary rocks. The orebodies can be divided into massive ores in gabbroic rock, skarn ores in calcareous xenoliths and banded ores in gneissic gabbro. Gabbroic rocks from the Yonchon iron mine have unusually high content of $TiO_2$ with an average values of 3.46 wt%. Iron ores are ilmenite (42.25~51.56 wt% in $TiO_2$) and titanomagnetite (1.29~6.57 wt% in $TiO_2$) and the former is dominant Small amount of magnetite, hematite, sphene and sulfide minerals are included in the ores. Grandite garnet, titanoaugite and tschermakite are in iron skarn ores. Hornblendes from ores and gabbroic rocks have a relatively homogeneous isotopic composition with ${\delta}D$ between -110.0 and -133.9‰, and ${\delta}^{18}O$ of +4.5 to +6.5‰, and calculated to have formed in fluids with ${\delta}O_{H_2O}$ of + 6.7 to +8.7‰. and ${\delta}_{H_2O}$ of -87.9 to -111.8‰, which has a similar isotopic value of primary magmatic water. Based on intrusive age, occurrence, mineral chemistry and isotopic compositions of magnetite ores and gabroic rocks, it will be concluded that the gabbroic rocks are responsible for the titanomagnetite mineralization. The titaniferous magnetite melt was immiscibly separated from the high titaniferous gabbroic melts of Proterozoic age.

  • PDF

Data Fusion of Mineral Exploration Data Sets and Its Application Using Fuzzy Set Theory (광물자원탐사 자료에 대한 데이터 통합과 그 응용사례)

  • Sungwon Choi
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.537-544
    • /
    • 1999
  • In mineral exploration, there are many data sets which need to be created, processed and analyzed in order to discover a favorable mineralized zone. Recently, with Geographic Information System (GIS), such exploration data sets have been able to be systematically stored and effectively processed using computer technologies. In this study, most exploration data sets were first digitized and then rasterized. Furthermore, they were integrated together by using fuzzy set theory to provide a possibility map toward a target hypothesis. Our target hypothesis is "there is a skarn magnetite deposit in this study" and all fuzzy membership functions were made with respect to the target hypothesis. Test area is extended from 37:00N/l28:30E to 37:20N/I28:45E, approximately 20 km by 40 km. This area is a part of Taebaeksan mineralized areas, where the Sinyemi mine, a skarn magnetite deposit, is located. In final resultant map, high potential or possibility area coincides with the location of the Shinyemi mine. In this regard, we conclude the fuzzy set theory can be effectively applied to this study and provides an excellent example to define potential area for further mineral exploration.

  • PDF

Mineralogy of gold-silver deposits in Chungcheong Province (충청도(忠淸道) 일원(一圓)의 금(金)·은(銀)광상(鑛床)에 대한 광물학적(鑛物學的) 연구(硏究))

  • Choi, Seon Gyu;Park, No Young;Hong, Sei Sun
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.223-234
    • /
    • 1988
  • A large number of gold and/or silver-bearing quartz veins occur in or near Mesozoic granite batholith elongated in a NE-SW direction within the Chungcheong Province. Precambrian schists and gneisses, and Jurassic and Cretaceous granitic rocks serve as hosts for gold and/or silver deposits. On the basis of Ag/Au total production and ore grade ratio, 15 mines may be divided into three major groups: gold-dominant deposits, gold-silver deposits, and silver-dominant deposits. The chemical composition of electrum from skarn deposit (Geodo mine), alaskite-type deposit (Geumjeong mine) and 15 vein deposits was summarized. It was found that the Au content of electrum for vein deposits ranging from 5.2 to 86.5 is lower than that for skarn and alaskite deposits. Among 15 vein deposits, the composition of electrum associated with pyrrhotite is relatively high and has a narrow range of 40.8 to 86.5 atomic % Au, but the Au content of electrum with pyrite is in range of 5.2 to 82.8 atomic %, and is clearly lower than that with pyrrhotite. The grouping of ages for these mines indicates that gold and/or silver mineralizations occurred during two periods in the Mesozoic. Daebo igneous activities are restricted to gold mineralization in the range of 158 to 133 Ma, whereas Bulgugsa igneous activities are related to gold and/or silver mineralization ranging from 108 to 71 Ma. Generally speaking, Jurassic gold-dominant veins have many common characteristics; notably prominent association with pegmatites, simply massive vein morphology, high fineness in the ore concentrates, rarity of silver minerals, and a distinctively simple mineralogy, including sphalerite, galena, chalcopyrite, pyrrhotite and/or pyrite. Although individual deposits exhibit widely differing diversity, Cretaceous gold-silver and silver-dominant veins are characterized by features such as complex vein, low to medium fineness in the ore concentrates and abundance of silver minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver.

  • PDF

Geology and Mineralization in Constancia Porphyry Cu-Mo Mine, Cusco State, Southeastern Peru (페루 남동부 쿠스코주 콘스탄시아 반암동-몰리브데늄 광산의 지질 및 광화작용)

  • Yang, Seok-Jun;Heo, Chul-ho
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.193-199
    • /
    • 2016
  • Constancia mine is a deposit developed within Andahuaylas-Yauri Cu-Mo-Au metallogenic belt, southeastern Peru and is located in the southwestern part of Abancay deformation zone structurally as the porphyry copper deposit type. Mineralized zone in Constancia mine are composed of leached zone, secondary enrichment zone(ca. 1% Cu), mixed zone, primary mineralized zone(ca. 0.5%), skarn zone(ca. 1.5% Cu) from the upper part. Main country rock is monzonitic porphyry. Leached zone are characterized by the precipitation of limonite and looks brown in the outcrop. Oxidized zone have green due to the occurrence of copper oxide and secondary enrichment zone are characterized by the occurrence of chalcocite. Skarn zone are characterized by the occurrence of magnetite and garnet. Now, Hudbay, Canadian mining company, have 100% share about Constancia mine and started to produce commercially from January, 2015.

Structural and Compositional Characteristics of Skarn Zinc-Lead Deposits in the Yeonhwa-Ulchin Mining District, Southeastern Taebaegsan Region, Korea Part I: The Yeonhwa I Mine

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.51-73
    • /
    • 1979
  • The zinc-lead deposits at the Yeonhwa I mine were investigated in terms of ore-forming geologic setting, structural style of ore control, geometry of individual orebodies, zoning, paragenesis and chemical composition of skarn minerals, as well as metal grades and ratios of selected orebodies. The Yeonhwa I mine is characterized by a large swarm of chimney type massive orebodies with thin skarn envelopes, boldly developed through a thick sequence of Pungchon Limestone, the overlying Hwajeol Formation, and the underlying Myobong Slate of Cambrian age. Nearly 20 orebodies of similar shape, but of varying size are arranged in a V-shaped pattern with northwest and northeast trends, clearly indicating an outstanding ore control by a conjugate system of fractures with these trends. Important orebodies are the Wolam 1, 2, 3, and 5 orebodies in the west, and the Namsan 1, 2, 3. and 5 orebodies in the east, among others. The Wolam 1 orebody, which was observed from the -360 level through the -240, -120, and 0 levels to the surface outcrops (totaling a vertical height of about 500m), shows a vertical variation in skarn mineralogy, ranging from pyroxene-garnet zone on the lower levels. through pyroxene (without garnet) zone on the intermediate levels, and finally to rhodochrosite vein on the upper levels and surface. Microprobe analyses of pyroxene and garnet on a total of 14 mineral grains revealed that pyroxenes are manganoan salitic in most samples, with downward increase of Fe and Mn, whereas garnets are highly andraditic, containing fractions of subordinate grossular with downward decrease of Fe. This indicates a reverse relationship of Fe-contents between pyroxene and garnet with depth. Ore minerals are major sphalerite, subordinate galena, and minor chalcopyrite. Sulfide gangue minerals include major pyrrhotite, and minor pyrite and marcasite of later age. Two types of variational trends in metal grades and ratios with depth are present on the plots of assay data from the Wolam orebodies: one is a steady upward increase in Pb, Zn, and Pb:Zn ratios, with a terminal decline at the top of orebody: the other is an irregular or sinusoidal change. The former is characteristic of chimney-type orebodies, whereas the latter is of vein· shaped orebodies. The Pb grades show large variations among orebodies and from level to level, whereas the Zn grades are relatively constand or less variable.

  • PDF