• Title/Summary/Keyword: sizing design

Search Result 416, Processing Time 0.028 seconds

Development of a Sizing System of Mass-customized Clothing for Wheelchair Users: Men's Suit Sizes (휠체어 장애인의 대량맞춤복을 위한 사이즈 체계 개발: 남성 정장 사이즈)

  • Park, Kwangae;Park, Jangwoon;Yang, Chungeun;Jeon, Eunjin;You, Heecheon
    • Fashion & Textile Research Journal
    • /
    • v.16 no.4
    • /
    • pp.625-634
    • /
    • 2014
  • This study develops a sizing system of mass-customized male suits for wheelchair users. One hundred and three male wheelchair users' 21 anthropometric dimensions were measured to identify body shapes and develop a sizing system. The measured wheelchair users' body sizes were compared with the average body sizes of Korean males from the $6^{th}$ Korean Body Size Survey to understand the body size differences between two groups. As a result of body shape classification using the KS's Drop method, wheelchair user body shapes were classified into four shapes for upper-body (A: 32%, B: 26%, BB: 24%, and Y: 18%), and two shapes for lower-body (B: 70% and A: 30%). The upper-body of wheelchair users was relatively developed than Korean males; however, the lower-body was relatively stunted. The key dimensions of a sizing system were selected as chest circumference, waist circumference, and trunk length, outside leg length based on the correlation analysis between anthropometric measures. The top sizes were determined considering chest and waist circumferences for horizontal sizes, and additionally the trunk length was divided into short, medium, and long groups for vertical sizes. The bottom sizes were selected considering the waist and hip circumferences for horizontal sizes, and additionally their outside leg length was divided into short, medium, and long groups for vertical sizes.

Energy Balance and Constraints for the Initial Sizing of a Solar Powered Aircraft (태양광 추진 항공기의 초기 사이징을 위한 에너지 균형 및 구속조건 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.523-535
    • /
    • 2012
  • Solar powered aircraft are becoming more and more interesting for future long endurance missions at hight altitudes, because they could provide surveillance, earth monitoring, telecommunications, etc. without any atmospheric pollution and hopefully in the near future with competitive costs compared with satellites. However, traditional aircraft sizing methods currently employed in the conceptual design phase are not immediately applicable to solar powered aircraft. Hence, energy balance and constraint analyses were performed to determine how various power system components effect the sizing of a solar powered long endurance aircraft. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. To verify current research results, these new sizing methods were applied to HALE aircraft and results were presented.

Reaction Kinetics for Steam Reforming of Ethane over Ru Catalyst and Reactor Sizing (루테늄 촉매를 이용한 에탄의 수증기 개질 반응 Kinetics와 반응기 Sizing)

  • Shin, Mi;Seong, Minjun;Jang, Jisu;Lee, Kyungeun;Cho, Jung-Ho;Lee, Young-Chul;Park, Young-Kwon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.204-209
    • /
    • 2012
  • In this study, kinetics data was obtained for steam reforming reaction of ethane over the commercial ruthenium catalyst. The variables of ethane steam reforming were the reaction temperature, partial pressure of ethane, and steam/ethane mole ratio. Parameters for the power rate law kinetic model and the Langmuir-Hinshelwood model were obtained from the kinetic data. Also, sizing of steam reforming reactor was performed by using PRO/II simulator. The reactor size calculated by the power rate law kinetic model was bigger than that of using the Langmuir-Hinshelwood model for the same conversion of ethane. Reactor size calculated by the Langmuir-Hinshelwood model seems to be more suitable for the reactor design because the Langmuir-Hinshelwood model was more consistent with the experimental results.

Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor (수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산)

  • Song, Kee-nam;Kim, Y-W
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF

Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames

  • Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.323-347
    • /
    • 2014
  • This paper proposes a Particle Swarm Optimization (PSO) algorithm, which is improved by making use of the Harmony Search (HS) approach and called HS-PSO algorithm. A computer code is developed for optimal sizing design of non-linear steel frames with various semi-rigid and rigid beam-to-column connections based on the HS-PSO algorithm. The developed code selects suitable sections for beams and columns, from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange W-shapes, such that the minimum total cost, which comprises total member plus connection costs, is obtained. Stress and displacement constraints of AISC-LRFD code together with the size constraints are imposed on the frame in the optimal design procedure. The nonlinear moment-rotation behavior of connections is modeled using the Frye-Morris polynomial model. Moreover, the P-${\Delta}$ effects of beam-column members are taken into account in the non-linear structural analysis. Three benchmark design examples with several types of connections are presented and the results are compared with those of standard PSO and of other researches as well. The comparison shows that the proposed HS-PSO algorithm performs better both than the PSO and the Big Bang-Big Crunch (BB-BC) methods.

The Suitability of the Size Classification of Dress Shirts on the Market (시판 드레스셔츠의 치수 구분 적합성)

  • Han, Eun Joo;Kweon, Soo Ae;Choi, Jong Myoung;Song, Jae Min;Lim, Bo Youn
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.5
    • /
    • pp.695-702
    • /
    • 2015
  • This study provides basic data that are helpful to prepare a sizing system for dress shirts that improves the wearer's size fitness. The 16 different parts of the dress shirts were measured for 24 pieces of dress shirts with three kinds of size (95, 100 and 105) among the eight different brands on the market. The measurement sizes of the dress shirts analyzed the accuracy of the size information, size classification by size designation, and differences of size by brand. The results of the study were: 1. The size information of dress shirts differed from customer demand. 2. The size increments between size designations differed from each other even though measurement sizes of the dress shirts increased as the size designation increase. 3. Measurement sizes of the dress shirts were different between brands even for dress shirts of the same size designation. It is necessary that manufacturers secure an accurate and standardized sizing system and provide accurate information for the measurement sizes of dress shirts on an online shopping mall.

Concurrent Engineering Design Optimization of Composite Structures (복합재 구조물의 동시공학 설계최적화)

  • 김건인;이희각
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.304-312
    • /
    • 1996
  • Concepts, methods and tools for interactive CAD-based concurrent engineering design optimization of mechanical/structural systems and components which are critical in terms of cost development time, functionality and quality, are presented. The emphasis is on implementation of methods and capabilities for the optimization of composite structural system, and the integration of design process and manufacturing process of composite structures into standard CAD-based concurrent engineering environment The optimization of composite fuselage structures are performed under concurrent engineering environment for the example.

  • PDF

Preliminary Thermal Sizing of Fuel Supply and Cooling System for High-speed Vehicles (고속 비행체 연료공급 및 냉각계통 예비 열설계)

  • Choi, Seyoung;Park, Sooyong;Choi, Hyunkyung;Kim, Joontae;Jeong, Haeseung;Park, Jeongbae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • In this study, preliminary thermal sizing was performed with the aim of developing a fuel supply and cooling system design to solve the heating problems in high-speed vehicles. First, an analysis model was used to satisfy an optional mission profile. The heat loads were computed under boundary conditions. The results were verified using the precedent design case. Then, fuel consumption rates were estimated for the analysis trajectory. Accordingly, the cooling capacity in the system was calculated using the heat sink capacity of the endothermic fuel. Lastly, the fulfillment of the design requirements was confirmed in comparison to the cooling needs.

Optimal Design of Batch-Storage Network with Finite Intermediate Storage (저장조 용량제약이 있는 회분식 공정-저장조 그물망 구조의 최적설계)

  • Kim, Hyung-Min;Kim, Kyoo-Nyun;Lee, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.867-873
    • /
    • 2001
  • The purpose of this study is to find analytic solution of determining the optimal capacity (lot-size) of multiproduct acyclic multistage production and inventory system to meet the finished product demand under the constraint of finite intermediate storage. Intermediate storage is a practical way to mitigate the material flow imbalance through the line of supply and demand chain. However, the cost of constructing and operating storage facilities is becoming substantial because of increasing land value, environmental and safety concern. Therefore, reasonable decision-making about the capacity of processes and storage units is an important subject for industries. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ(Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. But EOQ/EPQ model is not suitable for the chemical plant design with highly interlinked processes and storage units because it is developed based on single product and single stage. This study overcomes the limitation of the classical lot sizing method. The superstructure of the plant consists of the network of serially and/or parallelly interlinked non-continuous processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors. A novel production and inventory analysis method, PSW(Periodic Square Wave) model, is applied to describe the detail material flows among equipments. The objective function of this study is minimizing the total cost composed of setup and inventory holding cost. The advantage of PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of realistic description of the material flows between processes and storage units. the resulting simple analytic solution can greatly enhance the proper and quick investment decision for the preliminary plant design problem confronted with economic situation.

  • PDF