• Title/Summary/Keyword: size-optimization

Search Result 1,536, Processing Time 0.031 seconds

Optimization on Weight of High Pressure Hydrogen Storage Vessel Using Genetic Algorithm (유전 알고리즘을 이용한 고압 수소저장용기 중량 최적화)

  • Lee, Y.H.;Park, E.T.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.203-211
    • /
    • 2019
  • In this study, the weight of type IV pressure vessel is optimized through the burst pressure condition using the finite element analysis (FEA) based on the genetic algorithm (GA). The optimization design variables include the thickness of composite layers and the winding angles. The optimized design variables are validated using the numerical simulations for the pressure vessel. Consequently, the weight is decreased by about 6.5% as compared to the previously reported results for Type III pressure vessel. Additionally, a method which reduces the entire optimization time is proposed. In the original method, the population size is constant across all generations. However, the proposed method could reduce the workload through the reduction of the population size by half for every 25 generations. Thus, the proposed method is observed to increase the weight by about 0.1%, however, the working time for the optimization could be decreased by about 46.5%.

Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function (벌칙함수를 도입한 하모니서치 휴리스틱 알고리즘 기반 구조물의 이산최적설계법)

  • Jung, Ju-Seong;Choi, Yun-Chul;Lee, Kang-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.53-62
    • /
    • 2017
  • Many gradient-based mathematical methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. The main objective of this paper is to propose an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm that is derived using penalty function. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this paper, a discrete search strategy using the HS algorithm with a static penalty function is presented in detail and its applicability using several standard truss examples is discussed. The numerical results reveal that the HS algorithm with the static penalty function proposed in this study is a powerful search and design optimization technique for structures with discrete-sized members.

The Effect of Rebirthing Technique on GA-based Size Optimization

  • LEE, Sang-Jin;LEE, Hyeon-Jin
    • Architectural research
    • /
    • v.11 no.2
    • /
    • pp.19-26
    • /
    • 2009
  • The effect of rebirthing technique on the genetic algorithm (GA)-based size optimization is investigated. The GA mimics the principles of nature and it can gradually improve structural design through biological operations such as fitness, selection, crossover and mutation. However, premature optimum has been often detected in the generic GA with continuous design variable. Since then, the so-called rebirthing technique has been proposed to avoid this problem. However, the performance of the rebirthing technique has not been reported. Therefore, the size optimizations of spatial structures are tackled to investigate the performance of the rebirthing technique on the generic GA. From numerical results, it is well proved that the rebirthing technique is very effective to produce the optimum values regardless of the values of parameters used in the GA operations.

Studies on Optimization of PHEMTs (PHEMT 소자 최적화에 대한 연구)

  • 한효종;이문교;설우석;이복형;이한신;임병옥;김삼동;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.747-750
    • /
    • 2003
  • We have studied PHEMTs optimization by means of fabrication of PHEMTs. All PHEMTs have been fixed with a gate length of 0.1 ${\mu}{\textrm}{m}$, a gate head size of 0.75${\mu}{\textrm}{m}$, and two gate fingers. We have measured the characteristics of PHEMTs with variation of source-drain spacing, pad size, and gate width. As a result, we have found the enhanced characteristics of $I_{dss}$, $S_{21}$, $h_{21}$, $f_{T}$, $f_{max}$, and $G_{ms}$ with increasing gate width. Also, $g_{m}$ has improved with decreasing source-drain spacing, and $S_{21}$ has improved with deceasing pad size.e.e.e.e.

  • PDF

Design of Optical Image Stabilization Actuator for Compensating Hand Tremble (손 떨림 방지를 위한 OIS 액추에이터의 설계)

  • Hur, Young-Jun;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.75-79
    • /
    • 2011
  • Recently mobile phone camera become generally spread, it is required to develop high resolution, multi-functional camera module for obtaining high image quality. To satisfy this demand, number of pixels has been increased and pixel size decreased in small mobile phone cameras. As a result, image quality is seriously dropped by blur phenomena. Especially when hand tremble is occurred, image quality is dropped by camera shake. Therefore, to obtain high quality image, it is necessary to compensate user's hand tremble. In this paper, we propose voice coil actuator for compensating hand tremble, which can apply optical image stabilization (OIS) system. Sensitivity analysis and size optimization are performed to obtain high driving force. Finally, it is confirmed that the optimized electromagnetic circuit can be applied in OIS system.

The Determination of Optimum Beam Position and Size in Radiation Treatment (방사선치료시 최적의 빔 위치와 크기 결정)

  • 박정훈;서태석;최보영;이형구;신경섭
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • New method about the dose optimization problem in radiation treatment was researched. Since all conditions are more complex and there are more relevant variables, the solution of three-dimensional treatment planning is much more complicate than that of current two-dimensional one. There(ore, in this study, as a method to solve three-dimensional dose optimization problem, the considered variables was minized and researched by reducing the domain that solutions can exist and pre-determining the important beam parameters. First, the dangerous beam range that passes critical organ was found by coordinate transformation between linear accelerator coordinate and patient coordinate. And the beam size and rotation angle for rectangular collimator that conform tumor at arbitrary beam position was also determined. As a result, the available beam position could be reduced and the dependency on beam size and rotation angle, that is very important parameter in treatment planning, totally removed. Therefore, the resultant combinations of relevant variables could be greatly reduced and the dose optimization by objective function can be done with minimum variables. From the above results, the dose optimization problem was solved for the two-dimensional radiation treatment planning useful in clinic. The objective function was made by combination of dose gradient, critical organ dose and dose homogeniety. And the optimum variables were determined by applying step search method to objective function. From the dose distributions by optimum variables, the merit of new dose optimization method was verified and it can be implemented on commercial radiation treatment planning system with further research.

  • PDF

Optimization of Reinforcement of Thin-Walled Structures for a Natural Frequency (고유진동수를 고려한 박판 구조물의 보강재 최적설계)

  • Lim O-Kaung;Jeong Seung-Hwan;Choi Eun-Ho;Kim Dae-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.195-202
    • /
    • 2006
  • Thin-walled structures are efficiently utilized an automobiles, aircraft, satellite and ship as well as needed light weight simultaneously. This paper presents new shape of automobile hood reinforcement that rotating parts as engine, transmission are protected by thin-walled structures. The automobile hood is concerned about the resonance occurs due to the frequency of the rotating parts. The hood must be designed by supporting the stiffness of design loads and considering the natural frequencies. Hence, it is sustained the stiffness and considered the vibration by resonance. It is deep related to ride. Therefore, the topology, shape and size optimization methods are used to design the automobile hood. Topology technique is applied to determine the layout of a structural component optimum size with maximized natural frequency by volume reduction. In this research, The optimal structure layout of an inner reinforcement of an automobile hood for the natural frequency of a designated mode is obtained by using topology optimization method. The optimum size and the optimum shape are determined by PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm.

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

Crash Optimization of an Automobile Frontal Structure Using Equivalent Static Loads (등가정하중을 이용한 차량 전면구조물 충돌최적설계)

  • Lee, Youngmyung;Ahn, Jin-Seok;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2015
  • Automobile crash optimization is nonlinear dynamic response structural optimization that uses highly nonlinear crash analysis in the time domain. The equivalent static loads (ESLs) method has been proposed to solve such problems. The ESLs are the static load sets generating the same displacement field as that of nonlinear dynamic analysis. Linear static response structural optimization is employed with the ESLs as multiple loading conditions. Nonlinear dynamic analysis and linear static structural optimization are repeated until the convergence criteria are satisfied. Nonlinear dynamic crash analysis for frontal analysis may not have boundary conditions, but boundary conditions are required in linear static response optimization. This study proposes a method to use the inertia relief method to overcome the mismatch. An optimization problem is formulated for the design of an automobile frontal structure and solved by the proposed method.

Optimum Design of Rail in Semiconductor Processing (반도체 공정에 이용되는 레일의 최적설계)

  • 조재승;김학선;황종균;임오강
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.241-249
    • /
    • 2004
  • There is an over head hoist transporter(OHT) by the system for delivering the wafer in semiconductor processing. The transfer system consist of carrier, vehicle, rail and support. The Tail supporting the wafer and the transfer system should maintain enough strength and stiffness. To achieve lightness and enough strength and stiffness, optimization algorithm should be introduced in design process. In this study, two kinds of section shapes as L-type, C-type is carried out the structure analysis and optimization. Total weight of rail is to be minimized while displacement should not exceed limit. To improve the initial model, topology optimization is done by the plain problem. Size optimization is done with 3D solid element and PLBA algorithm, the RQP algorithm. The weight of optimum model as L-type, C-type is decreased by 2.3%, 10% respectively. It is improved better than the initial model in the strength and stiffness of the structure.