• Title/Summary/Keyword: six feature

Search Result 302, Processing Time 0.025 seconds

백악종의 임상 및 병리조직학적 관찰

  • Cho, Han-Kuk;Lim, Chang-Yun;Ko, Young-Taek;Yoon, Joo-Hong;Kim, Byoung-Gill
    • The Journal of the Korean dental association
    • /
    • v.12 no.9
    • /
    • pp.701-704
    • /
    • 1974
  • Total six cases of can cementoma encountered during the period of 1960 to July, 1974 at the department of oral pathology, college of dentistry, Seoul National University were clinically and histpathologically. As the result of present study the following conclusions were obtained. 1. The total six cases of cementoma consisted of four cases (67%) of male and two cases (33%) of female. The ratio between male are female was 1:2. 2. Three of 6 cases occurred in the decade and the mean age was 43.5 years. 3. All six cases occurred in the mandible and the favorite site was the molar region rather than anterior portion. The involvement of multiple teeth was the characteristic feature of the lesion. 4. The swelling of the jaw bone was the main symptom in all cases. 5. By the histopathological classification of cementomas all cases were involved n intermediate or mature inactive stage.

  • PDF

Default Prediction of Automobile Credit Based on Support Vector Machine

  • Chen, Ying;Zhang, Ruirui
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2021
  • Automobile credit business has developed rapidly in recent years, and corresponding default phenomena occur frequently. Credit default will bring great losses to automobile financial institutions. Therefore, the successful prediction of automobile credit default is of great significance. Firstly, the missing values are deleted, then the random forest is used for feature selection, and then the sample data are randomly grouped. Finally, six prediction models of support vector machine (SVM), random forest and k-nearest neighbor (KNN), logistic, decision tree, and artificial neural network (ANN) are constructed. The results show that these six machine learning models can be used to predict the default of automobile credit. Among these six models, the accuracy of decision tree is 0.79, which is the highest, but the comprehensive performance of SVM is the best. And random grouping can improve the efficiency of model operation to a certain extent, especially SVM.

Model based Facial Expression Recognition using New Feature Space (새로운 얼굴 특징공간을 이용한 모델 기반 얼굴 표정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.309-316
    • /
    • 2010
  • This paper introduces a new model based method for facial expression recognition that uses facial grid angles as feature space. In order to be able to recognize the six main facial expression, proposed method uses a grid approach and therefore it establishes a new feature space based on the angles that each gird's edge and vertex form. The way taken in the paper is robust against several affine transformations such as translation, rotation, and scaling which in other approaches are considered very harmful in the overall accuracy of a facial expression recognition algorithm. Also, this paper demonstrates the process that the feature space is created using angles and how a selection process of feature subset within this space is applied with Wrapper approach. Selected features are classified by SVM, 3-NN classifier and classification results are validated with two-tier cross validation. Proposed method shows 94% classification result and feature selection algorithm improves results by up to 10% over the full set of feature.

The Influence of Service Quality, Product Quality, Price on Store Patronage for Apparel Stores (의류점포의 서비스품질, 제품품질과 가격이 점포애고에 미치는 영향)

  • 김지연;이은영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.1
    • /
    • pp.12-21
    • /
    • 2004
  • The purposes of this research were (1) to identify service quality and apparel quality in apparel stores, (2) to examine the influence of service quality, product quality and price on customer satisfaction, (3) to examine the influence of service quality, product quality, price and customer satisfaction on repurchase intention that is important feature of store patronage. The data was collected from 435 female students, career women, and house wives using questionnaire and analyzed by frequency analysis, factor analysis, reliability analysis and regression. The results of this research were as follows: (1) Service quality in apparel stores was divided into six factors: facilities and policy/ salesperson VMD/ after service/ impression and atmosphere/ promotion. (2) Product quality was divided into four factors: objective feature/ expressive feature/ wearing sensation/ fitness. (3) Service quality, product quality, price influenced customer satisfaction. (4) Product quality, price and customer satisfaction influenced repurchase intention directly, but service quality influenced repurchase intention indirectly. (5) Service quality factors that influenced customer to have repurchase intention were facilities and policy, salesperson, and VMD. (6) Product quality factors that influenced customer to have repurchase intention were objective feature and wearing sensation.

Study on failure mode prediction of reinforced concrete columns based on class imbalanced dataset

  • Mingyi Cai;Guangjun Sun;Bo Chen
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.177-189
    • /
    • 2024
  • Accurately predicting the failure modes of reinforced concrete (RC) columns is essential for structural design and assessment. In this study, the challenges of imbalanced datasets and complex feature selection in machine learning (ML) methods were addressed through an optimized ML approach. By combining feature selection and oversampling techniques, the prediction of seismic failure modes in rectangular RC columns was improved. Two feature selection methods were used to identify six input parameters. To tackle class imbalance, the Borderline-SMOTE1 algorithm was employed, enhancing the learning capabilities of the models for minority classes. Eight ML algorithms were trained and fine-tuned using k-fold shuffle split cross-validation and grid search. The results showed that the artificial neural network model achieved 96.77% accuracy, while k-nearest neighbor, support vector machine, and random forest models each achieved 95.16% accuracy. The balanced dataset led to significant improvements, particularly in predicting the flexure-shear failure mode, with accuracy increasing by 6%, recall by 8%, and F1 scores by 7%. The use of the Borderline-SMOTE1 algorithm significantly improved the recognition of samples at failure mode boundaries, enhancing the classification performance of models like k-nearest neighbor and decision tree, which are highly sensitive to data distribution and decision boundaries. This method effectively addressed class imbalance and selected relevant features without requiring complex simulations like traditional methods, proving applicable for discerning failure modes in various concrete members under seismic action.

Two-Stage Neural Networks for Sign Language Pattern Recognition (수화 패턴 인식을 위한 2단계 신경망 모델)

  • Kim, Ho-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we present a sign language recognition model which does not use any wearable devices for object tracking. The system design issues and implementation issues such as data representation, feature extraction and pattern classification methods are discussed. The proposed data representation method for sign language patterns is robust for spatio-temporal variances of feature points. We present a feature extraction technique which can improve the computation speed by reducing the amount of feature data. A neural network model which is capable of incremental learning is described and the behaviors and learning algorithm of the model are introduced. We have defined a measure which reflects the relevance between the feature values and the pattern classes. The measure makes it possible to select more effective features without any degradation of performance. Through the experiments using six types of sign language patterns, the proposed model is evaluated empirically.

Searching for Optimal Ensemble of Feature-classifier Pairs in Gene Expression Profile using Genetic Algorithm (유전알고리즘을 이용한 유전자발현 데이타상의 특징-분류기쌍 최적 앙상블 탐색)

  • 박찬호;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.525-536
    • /
    • 2004
  • Gene expression profile is numerical data of gene expression level from organism, measured on the microarray. Generally, each specific tissue indicates different expression levels in related genes, so that we can classify disease with gene expression profile. Because all genes are not related to disease, it is needed to select related genes that is called feature selection, and it is needed to classify selected genes properly. This paper Proposes GA based method for searching optimal ensemble of feature-classifier pairs that are composed with seven feature selection methods based on correlation, similarity, and information theory, and six representative classifiers. In experimental results with leave-one-out cross validation on two gene expression Profiles related to cancers, we can find ensembles that produce much superior to all individual feature-classifier fairs for Lymphoma dataset and Colon dataset.

Implementation of Rotating Invariant Multi Object Detection System Applying MI-FL Based on SSD Algorithm (SSD 알고리즘 기반 MI-FL을 적용한 회전 불변의 다중 객체 검출 시스템 구현)

  • Park, Su-Bin;Lim, Hye-Youn;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2019
  • Recently, object detection technology based on CNN has been actively studied. Object detection technology is used as an important technology in autonomous vehicles, intelligent image analysis, and so on. In this paper, we propose a rotation change robust object detection system by applying MI-FL (Moment Invariant-Feature Layer) to SSD (Single Shot Multibox Detector) which is one of CNN-based object detectors. First, the features of the input image are extracted based on the VGG network. Then, a total of six feature layers are applied to generate bounding boxes by predicting the location and type of object. We then use the NMS algorithm to get the bounding box that is the most likely object. Once an object bounding box has been determined, the invariant moment feature of the corresponding region is extracted using MI-FL, and stored and learned in advance. In the detection process, it is possible to detect the rotated image more robust than the conventional method by using the previously stored moment invariant feature information. The performance improvement of about 4 ~ 5% was confirmed by comparing SSD with existing SSD and MI-FL.

Development of a Machine-Learning based Human Activity Recognition System including Eastern-Asian Specific Activities

  • Jeong, Seungmin;Choi, Cheolwoo;Oh, Dongik
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.127-135
    • /
    • 2020
  • The purpose of this study is to develop a human activity recognition (HAR) system, which distinguishes 13 activities, including five activities commonly dealt with in conventional HAR researches and eight activities from the Eastern-Asian culture. The eight special activities include floor-sitting/standing, chair-sitting/standing, floor-lying/up, and bed-lying/up. We used a 3-axis accelerometer sensor on the wrist for data collection and designed a machine learning model for the activity classification. Data clustering through preprocessing and feature extraction/reduction is performed. We then tested six machine learning algorithms for recognition accuracy comparison. As a result, we have achieved an average accuracy of 99.7% for the 13 activities. This result is far better than the average accuracy of current HAR researches based on a smartwatch (89.4%). The superiority of the HAR system developed in this study is proven because we have achieved 98.7% accuracy with publically available 'pamap2' dataset of 12 activities, whose conventionally met the best accuracy is 96.6%.

Time-Frequency Feature Extraction of Broadband Echo Signals from Individual Live Fish for Species Identification (활어 개체어의 광대역 음향산란신호로부터 어종식별을 위한 시간-주파수 특징 추출)

  • Lee, Dae-Jae;Kang, Hee-Young;Pak, Yong-Ye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.214-223
    • /
    • 2016
  • Joint time-frequency images of the broadband acoustic echoes of six fish species were obtained using the smoothed pseudo-Wigner-Ville distribution (SPWVD). The acoustic features were extracted by changing the sliced window widths and dividing the time window by a 0.02-ms interval and the frequency window by a 20-kHz bandwidth. The 22 spectrum amplitudes obtained in the time and frequency domains of the SPWVD images were fed as input parameters into an artificial neural network (ANN) to verify the effectiveness for species-dependent features related to fish species identification. The results showed that the time-frequency approach improves the extraction of species-specific features for species identification from broadband echoes, compare with time-only or frequency-only features. The ANN classifier based on these acoustic feature components was correct in approximately 74.5% of the test cases. In the future, the identification rate will be improved using time-frequency images with reduced dimensions of the broadband acoustic echoes as input for the ANN classifier.