• Title/Summary/Keyword: site specific

Search Result 2,336, Processing Time 0.034 seconds

The Study on the Variation of Pass-by-Noise level due to ISO Road (ISO 노면의 Pass-by-Noise Level 편차에 관한 연구)

  • 김기전;배철용;노국희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.371-376
    • /
    • 2003
  • The objective of this paper is to compare the site-to-site variability of ISO 10844 pass-by-noise test sites. In order to investigate the site-to-site variance of test surfaces, European commercial tires are tested at seven different test sites. Three Korea test sites and four Europe test sites are selected.. The pass by noise test is executed according to a 2001/43/EC regulation. A]though the ISO surface has a very specific track composition, it does not reduce the variation of pass-by-noise measurements over the surface of test sites. This paper shows that the test results of pass-by-noise level are different depending on the test sites. The correlation obtained in this work is able to predict the pass by noise level for certain test site using the data measured from another test site. 17he prediction value is range with an error within 1dB(A).

  • PDF

Development of logical structure for multi-unit probabilistic safety assessment

  • Lim, Ho-Gon;Kim, Dong-San;Han, Sang Hoon;Yang, Joon Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1210-1216
    • /
    • 2018
  • Site or multi-unit (MU) risk assessment has been a major issue in the field of nuclear safety study since the Fukushima accident in 2011. There have been few methods or experiences for MU risk assessment because the Fukushima accident was the first real MU accident and before the accident, there was little expectation of the possibility that an MU accident will occur. In addition to the lack of experience of MU risk assessment, since an MU nuclear power plant site is usually very complex to analyze as a whole, it was considered that a systematic method such as probabilistic safety assessment (PSA) is difficult to apply to MU risk assessment. This paper proposes a new MU risk assessment methodology by using the conventional PSA methodology which is widely used in nuclear power plant risk assessment. The logical failure structure of a site with multiple units is suggested from the definition of site risk, and a decomposition method is applied to identify specific MU failure scenarios.

Verification of 2-Parameters Site Classification System and Site Coefficients (I) - Comparisons with Well-known Seismic Code and Site Response Characteristics (2-매개변수 지반분류 방법 및 지반 증폭계수의 검증 (I) - 국외 내진설계기준 및 부지응답특성과의 비교)

  • Lee, Sei-Hyun;Sun, Chang-Guk;Ha, Jeong-Gon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.25-34
    • /
    • 2012
  • In order to verify that the recently proposed two-parameters site classification system and the corresponding site coefficients are suitable for the local geological conditions in Korea, a comparison was conducted with current Korean seismic code, Eurocode-8, NYC DOT seismic code. The design spectrum of the current Korean seismic code is significantly amplified in the long-period range, whereas the other response spectra, including the proposed two-parameters approach, are significantly amplified in the short-period range, which is a typical geological condition in Korea. In addition, based on the results of site response analyses in the specific $10km{\times}10km$ area of Gyeongju, spatial distributions of site coefficients from site-specific seismic response analyses were compared with the proposed site coefficients, as well as those specified in the current Korean seismic code. The site coefficients ($F_a$ and $F_v$) from the current Korean seismic codes show significantly high spatial error distributions compared with those specified by the two-parameters site classification system. Therefore, the proposed system is suitable for regions of shallow bedrock including the Korean peninsula.

Key Methodologies to Effective Site-specific Accessment in Contaminated Soils : A Review (오염토양의 효과적 현장조사에 대한 주요 방법론의 검토)

  • Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.383-397
    • /
    • 1999
  • For sites to be investigated, the results of such an investigation can be used in determining foals for cleanup, quantifying risks, determining acceptable and unacceptable risk, and developing cleanup plans t hat do not cause unnecessary delays in the redevelopment and reuse of the property. To do this, it is essential that an appropriately detailed study of the site be performed to identify the cause, nature, and extent of contamination and the possible threats to the environment or to any people living or working nearby through the analysis of samples of soil and soil gas, groundwater, surface water, and sediment. The migration pathways of contaminants also are examined during this phase. Key aspects of cost-effective site assessment to help standardize and accelerate the evaluation of contaminated soils at sites are to provide a simple step-by-step methodology for environmental science/engineering professionals to calculate risk-based, site-specific soil levels for contaminants in soil. Its use may significantly reduce the time it takes to complete soil investigations and cleanup actions at some sites, as well as improve the consistency of these actions across the nation. To achieve the effective site assessment, it requires the criteria for choosing the type of standard and setting the magnitude of the standard come from different sources, depending on many factors including the nature of the contamination. A general scheme for site-specific assessment consists of sequential Phase I, II, and III, which is defined by workplan and soil screening levels. Phase I are conducted to identify and confirm a site's recognized environmental conditions resulting from past actions. If a Phase 1 identifies potential hazardous substances, a Phase II is usually conducted to confirm the absence, or presence and extent, of contamination. Phase II involve the collection and analysis of samples. And Phase III is to remediate the contaminated soils determined by Phase I and Phase II. However, important factors in determining whether a assessment standard is site-specific and suitable are (1) the spatial extent of the sampling and the size of the sample area; (2) the number of samples taken: (3) the strategy of taking samples: and (4) the way the data are analyzed. Although selected methods are recommended, application of quantitative methods is directed by users having prior training or experience for the dynamic site investigation process.

  • PDF

Identification of the 187 bp EphA7 Genomic DNA as the Dorsal Midline-Specific Enhancer of the Diencephalon and Mesencephalon

  • Kim, Yujin;Park, Eunjeong;Park, Soochul
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.1007-1012
    • /
    • 2015
  • EphA7 is a key molecule in regulating the development of the dien- and mesencephalon. To get insight into the mechanism of how EphA7 gene expression is regulated during the dorsal specification of the dien- and mesencephalon, we investigated the cis-acting regulatory sequence driving EphA7 to the dorsal midline of the dien- and mesencephalon. Transgenic LacZ reporter analysis, using overlapping EphA7 BACs, was used to narrow down the dorsal midline-specific enhancer, revealing the 25.3 kb genomic region as the enhancer candidate. Strikingly, this genomic DNA was located far downstream of the EphA7 transcription start site, +302.6 kb to +327.9 kb. Further enhancer mapping, using comparative genomic analysis and transgenic methods, showed that the 187 bp genomic DNA alone, approximately 305 kb downstream of the EphA7 transcription start site, was sufficient to act as the dorsal midline-specific enhancer of EphA7. Importantly, our results indicate that the 187 bp dorsal midline-specific enhancer is critically regulated by homeobox transcription factors during the development of the dien- and mesencephalon.