• Title/Summary/Keyword: site response analysis

Search Result 662, Processing Time 0.028 seconds

The effect of local topography on the seismic response of a coupled train-bridge system

  • Qiao, Hong;Du, Xianting;Xia, He;De Roeck, Guido;Lombaert, Geert;Long, Peiheng
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.177-191
    • /
    • 2019
  • The local topography has a significant effect on the characteristics of seismic ground motion. This paper investigates the influence of topographic effects on the seismic response of a train-bridge system. A 3-D finite element model with local absorbing boundary conditions is established for the local site. The time histories of seismic ground motion are converted into equivalent loads on the artificial boundary, to obtain the seismic input at the bridge supports. The analysis of the train-bridge system subjected to multi-support seismic excitations is performed, by applying the displacement time histories of the seismic ground motion to the bridge supports. In a case study considering a bridge with a span of 466 m crossing a valley, the seismic response of the train-bridge system is analyzed. The results show that the local topography and the incident angle of seismic waves have a significant effect on the seismic response of the train-bridge system. Leaving these effects out of consideration may lead to unsafe analysis results.

Development & Verification of Frequency-Strain Dependence Curve (주파수-변형률 곡선의 개발 및 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.146-153
    • /
    • 2009
  • One dimensional site response analysis is widely used in prediction of the ground motion that is induced by earthquake. Equivalent linear analysis is the most widely used method due to its simplicity and ease of use. However, the equivalent linear method has been known to be unreliable since it approximates the nonlinear soil behavior within the linear framework. To consider the nonlinearity of the ground at frequency domain, frequency dependent algorithms that can simulate shear strain - frequency dependency have been proposed. In this study, the results of the modified equivalent linear analysis are compared to evaluate the degree of improvement and the applicability of the modified algorithms. Results show the novel smoothed curve that is proposed by this study indicates the most stable prediction and can enhance the accuracy of the prediction.

  • PDF

Dynamic Characteristics of the Integral Reactor SMART

  • Kim, Tae-Wan;Park, Keun-Bae;Jeong, Kyeong-Hoon;Lee, Gyu-Mahn;Park, Suhn
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.111-120
    • /
    • 2001
  • In this study, a dynamic analysis of the integral reactor SMART (System-integrated Modular Advanced ReacTor) under postulated seismic events is performed to review the response characteristics of the major components. To enhance the feasibility of an analysis model, a detailed finite element model is synchronized with the products of concurrent design activities. The artificial time history, which has been applied to the seismic analysis for the Korean Standard Nuclear Power Plant (KSNP), is chosen to envelop broad site specifics in Korea. Responses in the horizontal direction are found slightly amplified, while those in the vertical direction are suppressed. Since amplified response is monitored at the control element drive mechanism (CEDM), minor design provision is considered to enhance the integrity of the subsystem.

  • PDF

Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70

  • Yoo, Sooji;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.

Identification of a Regulatory Element Required for 3’-End Formation in Transcripts of rhp51$^+$, a recA Homolog of the Fission Yeast Schizosaccharomyces pombe

  • Yeun Kyu Jang
    • Animal cells and systems
    • /
    • v.3 no.4
    • /
    • pp.413-415
    • /
    • 1999
  • Our previous report demonstrated that the rhp51$^+$, a recA and RAD51 homolog of the fission yeast, encodes three transcripts of 1.9, 1.6 and 1.3 kb which have at least six polyadenylation sites. The 3'-end of the gene alone can direct the formation of multiple, discrete 3'ends of the transcripts. To identify the regulatory element required for the 3'-end formation of -rhp51$^+$ deletion mapping analysis was performed. Northern blot analysis revealed that the 254-bp DNA fragment including 4 distinct poly (A) sites downstream from the Hindlll site, is crucial for normal 3'-end formation. Deletion of the 3'-terminal AU rich region caused appearance of read-through RNA, leading to enhancement of survival rate of the rhp51 deletion mutant in response to DNA damaging agent, methylmethane sulfonate (MMS). The results imply that the rhp51$^+$ system may be useful for molecular analysis of the 3'-end formation of RNA in the fission yeast.

  • PDF

Seismic Fragility Evaluation of Inverted T-type Wall with a Backfill Slope Considering Site Conditions (사면 경사도가 있는 뒷채움토와 지반특성을 고려한 역T형 옹벽의 지진시 취약도 평가)

  • Seo, Hwanwoo;Kim, Byungmin;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.533-541
    • /
    • 2021
  • Retaining walls have been used to prevent slope failure through resistance of earth pressure in railway, road, nuclear power plant, dam, and river infrastructure. To calculate dynamic earth pressure and determine the characteristics for seismic behavior, many researchers have analyzed the nonlinear response of ground and structure based on various numerical analyses (FLAC, PLAXIS, ABAQUS etc). In addition, seismic fragility evaluation is performed to ensure safety against earthquakes for structures. In this study, we used the FLAC2D program to understand the seismic response of the inverted T-type wall with a backfill slope, and evaluated seismic fragility based on relative horizontal displacements of the wall. Nonlinear site response analysis was performed for each site (S2 and S4) using the seven ground motions to calculate various seismic loadings reflecting site characteristics. The numerical model was validated based on other numerical models, experiment results, and generalized formula for dynamic active earth pressure. We also determined the damage state and damage index based on the height of retaining wall, and developed the seismic fragility curves. The damage probabilities of the retaining wall for the S4 site were computed to be larger than those for the S2 site.

Response of double hinged articulated tower platforms to wind forces

  • Islam, Nazrul;Zaheer, Mohd Moonis;Ahmed, Suhail
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.103-120
    • /
    • 2009
  • Articulated tower platforms due to its compliant nature are more susceptible to the dynamic effects of wind than conventional fixed platforms. Dynamic response analysis of a double hinged articulated tower excited by low frequency wind forces with random waves is presented in this paper. The exposed super structure of the platform, housing the drilling and production facilities is subjected to mean and fluctuating wind loads, while the submerged portion is acted upon by wind driven waves. The fluctuating component of the wind velocity is modeled by Emil Simiu's spectrum, while the sea state is characterized by Pierson-Moskowitz spectrum. Nonlinearities in the system due to drag force, added mass, variable submergence and instantaneous tower orientation are considered in the analysis. To account for these nonlinearities, an implicit time integration scheme (Newmark's-${\beta}$) has been employed which solves the equation of motion in an iterative fashion and response time histories are obtained. The power spectra obtained from random response time histories show the significance of low frequency responses.

A Study on Deriving Key Management Factors for the Prevention of COVID-19 in Construction Sites (건설현장 코로나 바이러스 예방을 위한 중점관리요소 도출에 관한 연구)

  • Shin, Eun Kyoung;Eom, Yong Been;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.91-102
    • /
    • 2022
  • Many industries are being severely damaged by COVID-19, a respiratory infection that has recently been prevalent around the world. In particular, for workers in the construction industry, it is impossible to work from home, and if an outbreak on a construction site is confirmed, it can lead to great damage. Accordingly, the government has drafted 「Guidelines for Response to Construction Sites for Prevention and Spread of COVID-19」. In addition, domestic and foreign research about COVID-19 in the field of construction sites is being actively conducted. However, Korea has lacked studies on the effectiveness of the countermeasures in place at construction sites, or that reflect the opinions of construction site workers. Therefore, this study conducted a survey of construction site workers by dividing the construction of the COVID-19 quarantine management system and response plan into on-site management and social management. Through the AHP/IPA analysis, it was found that among social management, 'infectious disease management system and cooperation system with related institutions' and 'reduction of working hours' are areas with high importance but low satisfaction. After that, the causes of the two items were analyzed and related countermeasures were suggested. The results of this study will be able to contribute to the improvement of the quarantine management system and response plan at construction sites, and to minimize the damage to the construction industry related to COVID-19.

A Study on the Applicability of Amplification Factor to Estimate Peak Ground Acceleration of Pohang Area (국내 내진설계기준의 지반증폭계수를 활용한 포항지역의 지표면 최대가속도 산출 적절성 검토)

  • Kim, Jongkwan;Han, Jin-Tae;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.21-33
    • /
    • 2020
  • Ground response analysis has been conducted for each borehole data in Pohang area, using 1D equivalent linear method program, to investigate the applicability of amplification factor to estimate peak ground acceleration. Earthquake motions for ground response analysis were prepared by matching response spectrums for return period of 500, 1000, and 2400 years suggested by seismic design code (MOIS, 2017). Ground survey data were acquired from Geotechnical Information DB System. It has been confirmed that response spectrum obtained from ground response analysis showed good agreement with those from seismic design code irrespective of ground classification. However, PGA (Peak Ground Accelerations) of ground response analysis did not coincide with PGA calculated using amplification factor suggested by seismic design code.

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.