• Title/Summary/Keyword: sinuosity

Search Result 44, Processing Time 0.016 seconds

Floodwave Propagation in Sinuous Channel with Compound Cross Sections (사행도를 가진 복합단면 하도에서의 홍수파특성)

  • Park, Jae-Hong;Han, Kun-Yeun;Cho, Hong-Je
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.95-104
    • /
    • 1994
  • The sinuosity model has been developed to simulate to developed to simulate the floodwave in meandering channels by solving the extended Saint-Venant equation with the Preissmann scheme. The suggested model is compared with three conventional floodplain routing methods in terms of governing equations, mass conservation error and floodwave analysis. The sinuosity model produces the mass conservation error of 1.5-1.8%, however the separate channel model produces 9.1% and 27.4% for sinuosity of 1.5 and 2.0, respectively. The model has been used to simulate flow in an idealized meandering river with a floodplain. The attenuation ratio and the travel time ratio are found to increase as the floodplain roughness and width increase and as the sinuosity factor decreases. The model is expected to contribute the floodwave analysis in sinuous channel with compound corss sections.

  • PDF

Test of a Physical Habitat Model for Stream Restoration : A Case Study on Midstream of Anyang-Cheon (생태하천복원을 위한 물리서식처 모형의 적용 : 안양천 중류를 대상으로)

  • Baek, Kyong Oh;Kim, Chang Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • This study focuses on whether a physical habitat model, River2D, is useful to assess and design stream restoration. To achieve the aim, the habitat suitability for Zacco Platypus was analyzed using River2D at midstream of the Anyang-Cheon through modifying the low flow channel and changing the flow discharge. The River2D simulation results show that the inhabited environment for Zacco Platypus is improved by increasing the sinuosity of the low flow channel, and vice versa. Also the inhabited environment for Zacco Platypus gets worse when there is no additional flow for maintenance water supply at the stream flowing through cities. In this respect, the physical habitat simulation study based on the River2D model is useful because it provides a practical guidance in designing stream restoration.

Migration Characteristics in Sine-Wave Type Rivers (정현파형하천의 이행특성)

  • 차영기;배동만
    • Water for future
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 1992
  • This study is a model on the Migration Characteristics which developed by using the equations for conservation of mass, momentum and for lateral stability of the streambed, an the model can be examined for magnitude and location of near-bank bed scour as well as rates and direction of meander migration in which sine-Wave type rivers(SWR) of the small sinuosity. It is evident from this study that the transverse bed slope factor B' and transverse mass flux factor $ play significient roles, and show reasonable that the values are B'=4.0 and $=0.4 respectively . It will be a useful guide in planning, design, construction, and development of SWR river-basin projects.

  • PDF

CLASSIFICATION OF AQUATIC AREAS FOR NATURAL AND MODIFIED RIVERS

  • Cheong, Tae-Sung;Seo, Il-Won
    • Water Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.33-48
    • /
    • 2001
  • For the design of suitable aquatic habitats and habitat management purposes, sensitive descriptors for aquatic areas were identified and analyzed. The classification system of the aquatic areas were developed for natural streams and modified streams in Korea. Relationships among the descriptors of an aquatic area such as channel width, meander wave length, and arc angle have been defined. The analysis indicates that the total mean sinuosity is 1.25 for the main channels of natural streams, whereas the mean value of the sinuosity of modified streams is 1.14. The mean values of the total area, the width, and the length for the sandbars of natural streams are larger than those of modified streams.

  • PDF

Numerical Analysis for Bed Changes at the Meandering Stream due to a Short Term Flood Event (단기 홍수사상으로 인한 사행하천의 하상변동 수치모의 분석)

  • Ji, Un;Jang, Eun Kyung;Lee, Chan Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1229-1236
    • /
    • 2015
  • In this study, flow characteristics and bed changes during a short term flood event were analyzed using the two-dimensional CCHE2D model for a meandering sand-bed river, the Naesung Stream. Flow and bed change simulation was carried along the three sub-reaches with sinuosity of 1.2, 1.6 and 2.2 for the 6-day flood event occurring in June 2011. The simulation results indicated that velocity variation due to flow concentration was larger along the sub-reach with the sinuosity less than 1.5 and bed erosion at the outside of the bend was increased by time. In the sub-reach with the sinuosity less than 1.5, the maximum flood discharge produced the maximum flow velocity over 1.6 m/s to 2 m/s locally.

New Equation on Streamwise Variation of Secondary Flow in Meandering Channels (만곡수로에서 흐름방향에 따른 2차류의 변화량 산정식)

  • Baek, Kyong Oh;Seo, Il Won;Lee, Kyu Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.371-378
    • /
    • 2006
  • In this study, a theoretical equation was derived based on Odgaard (1986) and Chang (1988) to reveal the streamwise variation of the secondary flow in meandering channels. The new equation describes the transverse component of the secondary flow as a function of streamwise and vertical directions. To validate the proposed equation, hydraulic experiments were conducted in laboratory meandering channels having different sinuosity. Comparison of experimental results with the proposed equation and an existing equation revealed that the equation was in good agreement with the measured data. However, the existing equation overestimated the transverse velocity. Investigation of the variation of the secondary flow with respect to hydraulic parameters based on the new equation showed that the secondary flow tended to increase as the sinuosity, the roughness, and the aspect ratio became larger. Also, streamwise profile of the secondary flow was sensitive to variations of the roughness and the aspect ratio.

Origin and Stratigraphic Implication of Calcretes from the Gyeongsang Supergroup in the Vicinity of Ulsan City (울산시 부근의 경상누층군에 발달한 캘크리트의 기원과 층서적 의미)

  • Paik, In Sung;Lee, Joon Dong;Kim, Jeong Jin;Kim, In Soo;Kim, Hyun Joo
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.431-446
    • /
    • 1998
  • The calcretes from the Cretaceous Gyeongsang Supergroup in the vicinity of Ulsan city have been examined at five sites (Daedong, Seodong, Ansachon, Deogha, and Mangyangri). In these calcretes, evidences indicating pedogenic origin are recognized. Included are calcite aureoles around detrital grains, pedotubular pores, microstromatactis, circumgranular cracks, fitted structure of adjacent peloids, calcrete ooids, rhizocretions, and calcrete intraclasts. On the basis of calcrete development together with lithofacies, the depositional environments of those deposits are interpreted as lake margin (Daedong deposits), braided to low-sinuosity river (Seodong deposits), braid plain (Ansachon deposits), and meandering river (Deogha and Mangyangri). Stratigraphically, the fluvial deposits of study area show paleoenvironmental change from braided to low-sinuosity river plain under arid climatic condition to meandering river plain under seasonally wet an dry climatic condition. The stratigraphic successions of the Gyeongsang Supergroup of the study area Qacustrine-fluvial-Iacustrine) together with paleoenvironmental change of fluvial deposits suggest that those deposits can be correlated with the Banyaweol-Songnaedong-Geoncheonri formations of the Gyeongsang Supergroup in the western part of the Yangsan Fault.

  • PDF

Analysis of Drying Streams Characteristics Using a GIS (GIS를 이용한 건천화 하천의 특성분석)

  • Jung, Kwan-Sue;Cho, Hyo-Seob;Kim, Jeong-Yup;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1083-1095
    • /
    • 2003
  • The analysis of drying stream characteristics for about 500 streams from field survey data with 19 items has been fulfilled. Also, a study area has been determined, and criteria of estimation has been established : criteria such as, available hydrological data, the size of stream lengths and basin areas and regional characteristics. Then they are applied to designated study areas. The final selected study areas are 8 basins. The analysis of drying stream characteristics using a GIS has been applied to 5 basins in which spacial data is comparatively implemented among the final 8 target catchments. The spacial analysis using a GIS is applied to stream slopes for upstream and downstram at weirs, overlaying the map of buffering stream networks and ground water pump stations map, sinuosity of drying stream. As a result of drying streams survey analysis, drying stream characteristics are followed; levee types are earth and natural, cross sectional shapes are trapezoid, stream bed materials are gravels and sands, facilities in streams are weirs. As a result of GIS analysis, stream slopes are comparatively larger downstream than upstream close to weirs. There are arranged ground water pump stations less than 500m from stream networks. Also the average of sinuosity for each drying stream is in the range of 1.229∼1.475, comparatively a serious.

Analysis of River Disturbance using a GIS (I) (GIS기법을 이용한 하천 교란 실태의 분석(I))

  • Park, Eun-Ji;Kim, Kye-Hyun;Lee, On-Kil
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.2
    • /
    • pp.81-93
    • /
    • 2008
  • Current re-arrangement of river and waterway has been made uniformly ignoring characteristics of individual rivers thereby aggravating artificial river restructuring. Subsequently this severely affects the rivers' physical, chemical, and biological phenomenon. On the contrary, quantitative techniques to evaluate the aftermath of artificial river disturbance such as uprising of river bed, intrusion of foreign fisheries, and changes of ecological habitats are not available. To establish such quantitative techniques, analysis of river changes to evaluate the major causes of the river disturbance and its impacts is essential. Therefore, this study mainly focused on proposing a method which can be applied for the development of techniques to investigate river disturbance according to the major factors for the domestic rivers using airphotos and GIS techniques. For the analysis, the study area on the downstream of the river was selected and airphotos of the area were converted into GIS format to generate 'shape' files to secure waterways, river banks, and auxiliary data required for analyzing river disturbance. Trend analysis of the waterway sinuosity and changes of the flow path leaded to detailed verification of the river disturbance for specific location or time period, and this enabled to relatively accurate numbers representing sinuosity of the waterway and relevant changes. As the major results from the analysis, the relocation of waterways and the level of river sinuosity were quantified and used to verify the impacts on the stability of the waterways especially in the downstream of the dam. The results from this study enabled effective establishing proper measures against waterways' unstability, and emphasized subsequent researches for identifying better alternatives against river disturbances.

  • PDF