• Title/Summary/Keyword: sintering shrinkage behavior

Search Result 61, Processing Time 0.026 seconds

Compaction and Sintering Behavior of $Al_2O_3$-modified Ziroconium Titanate $(ZrTiO_4)$

  • Chun, Myoung-Pyo;Geun, Hur;Myoung, Seung-Jae;Cho, Jung-Ho;Kim, Byung-Ik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.822-823
    • /
    • 2006
  • The compaction and sintering behavior of zirconium titanate $(ZrTiO_4)$ was investigated by means of the measurement of sintering density and shrinkage, and the observation of microstructure. With increasing the content of $Al_2O_3$ additive, $Al_2O_3$-modified zirconium titanate samples fired at $1300^{\circ}C$ showed the anisotropic shrinkage behavior that the upper region of sintered body has higher sintering shrinkage than the low region. This difference of sintering shrinkage decreased with increasing firing temperature from 1300 to $1400^{\circ}C$. The SEM micrographs of powder compation show that the anisotropic shrinkage behavior is related with non-uniform density in a uniaxial compaction.

  • PDF

Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming

  • Oh, Gye-Jeong;Yun, Kwi-Dug;Lee, Kwang-Min;Lim, Hyun-Pil;Park, Sang-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.3
    • /
    • pp.81-87
    • /
    • 2010
  • PURPOSE. The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. MATERIALS AND METHODS. Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo $Everest^{(R)}$ ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. RESULTS. Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. CONCLUSION. Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block.

Factors Influencing the Camber of Cofired Resistor/Low Temperature Cofired Ceramics (LTCC) Bi-Layers (동시 소성된 저항/저온 동시 소성 세라믹(LTCC) 이중층의 캠버에 영향을 미치는 인자)

  • Ok Yeon Hong;Seok-Hong Min
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.537-549
    • /
    • 2023
  • The sintering shrinkage behaviors of low temperature cofired ceramics (LTCC) and resistors were compared using commercial LTCC and thick-film resistor pastes, and factors influencing the camber of cofired resistor/LTCC bi-layers were also investigated. The onset of sintering shrinkage of the resistor occurred earlier than that of LTCC in all resistors, but the end of sintering shrinkage of the resistor occurred earlier or later than that of LTCC depending on the composition of the resistor. The sintering shrinkage end temperature and the sintering shrinkage temperature interval of the resistor increased as the RuO2/glass volume ratio of the resistor increased. The camber of cofired resistor/LTCC bi-layers was obtained using three different methods, all of which showed nearly identical trends. The camber of cofired resistor/LTCC bi-layers was not affected by either the difference in linear shrinkage strain after sintering between LTCC and resistors or the similarity of sintering shrinkage temperature ranges of LTCC and resistors. However, it was strongly affected by the RuO2/glass volume ratio of the resistor. The content of Ag and Pd had no effect on the sintering shrinkage end temperature or sintering shrinkage temperature interval of the resistor, or on the camber of cofired resistor/LTCC bi-layers.

A Study on the Sintering Behavior of Nanostructured W-30 wt%Cu Composite Powder by Dilatometry (Dilatometric 분석에 의한 나노구조 W-30 wt%Cu 복합분말의 소결거동연구)

  • 류성수
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • In order to clarify the enhanced sintering behavior of nanostructured(NS) W-Cu powder prepared by mechaincal alloying, the sintering behavior during heating stage was analysed by a dilatometry with various heating rates. The sintering of NS W-Cu powders was characterized by the densification of two stages, having two peaks in shrinkage rate curves. The temperature at which the first peak appear was much lower than Cu melting point, and dependent on heating rate. On the basis of the shrinkage rate curves and the microstructural observation, the coupling effect of nanocrystalline W-grain growth and the liquid-like behavior of Cu phase was suggested as a possible mechanism for the enhanced sintering of NS W-Cu powder in the state.

  • PDF

Densification Behavior of Rhenium Alloy using Master Sintering Curve

  • Park, Dong Yong;Oh, Yong Jun;Kwon, Young Sam;Lim, Seong Taek;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2014
  • This study investigated the densification behavior of rhenium alloys including W-25 wt.%Re and Re-2W-1Ta (pure Re) during sintering. The dilatometry experiments were carried out to obtain the in-situ shrinkage in $H_2$ atmosphere. The measured data was analyzed through shrinkage, strain rate and relative density, and then symmetrically treated to construct the linearized form of master sintering curve (MSC) and MSC as a well-known and straightforward approach to describe the densification behavior during sintering. The densification behaviors for each material were analyzed in many respects including apparent activation energy, densification parameter, and densification ratio. MSC with a minimal set of preliminary experiments can make the densification behavior to be characterized and predicted as well as provide guideline to sinter cycle design. Considering the results of linearized form and MSC, it was confirmed that the W-25 wt.%Re compared to Pure Re is more easily densified at the relatively low temperature.

Sintering Distortion of Barrier Ribs Formed via Capillary Molding Route

  • Chang, Tae-Jung;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.362-364
    • /
    • 2003
  • In this study, sintering behavior of closed-cell type barrier ribs formed via capillary molding route was examined. Sintering of the molded barrier ribs revealed asymmetric shrinkage, leading to distortion of the cells. The effects of the parameters such as solid loading in the paste, presintering temperature, and morphology of the barrier ribs on the sintering shrinkage of the barrier ribs were investigated.

  • PDF

Observation of Densification Behavior during the Sintering of Ni-added $MoSi_2$ Powder Compacts (Ni을 첨가한 $MoSi_2$분말성형체의 소결시 치밀화거동의 관찰)

  • 이승익
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.298-303
    • /
    • 1997
  • The activated sintering behavior of $MoSi_2$ powder compacts with addition of 0.5 and 1.0 wt.%Ni during the sintering under As atmosphere was studied. The shrinkage was measured and the microstructures were observed by SEM (scanning electron microscopy) and BEI (backscattered electron image) along with the phase analysis by EDS during heating up to 155$0^{\circ}C$ and holding for various time at 155$0^{\circ}C$. The most of shrinkage occurred upon heating and 92% of theoretical density was attained after sintering for 1 hr at 155$0^{\circ}C$. However, little shrinkage ensued even for prolonged sintering over 1 hr at 155$0^{\circ}C$. A liquid film formed at about 135$0^{\circ}C$ along necks and grain boundaries. The polyhedral grain structure composed of $(Mo,Ni)_5Si_3$and $Ni_2Si$ across the $MoSi_2$ grain boundary developed at 155$0^{\circ}C$. It was concluded that the activated sintering of $MoSi_2$ powder by Ni led to the diffusion of Si into Ni decreasing the liquidus temperature and the enhanced diffusion of Mo and Si through such a liquid phase and/or interboundary of $(Mo,Ni)_5Si_3$.

  • PDF

Preparation and Sintering Behavior of Fe Nanopowders Produced by Plasma Arc Discharge Process

  • Choi, Chul-Jin;Yu, Ji-Hun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.284-285
    • /
    • 2006
  • The nano-sized Fe powders were prepared by plasma arc discharge process using pure Fe rod. The microstructure and the sintering behavior of the prepared nanopowders were evaluated. The prepared Fe nanopowders had nearly spherical shapes and consisted of metallic core and oxide shell structures. The higher volume shrinkage at low sintering temperature was observed due to the reduction of surface oxide. The nanopowders showed 6 times higher densification rate and more significant isotropic shrinkage behavior than those of micron sized Fe powders.

  • PDF

Sintering Behavior of Bimodal Size-Distributed Alumina Powder Mixtures (이중분포를 갖는 알루미나 혼합분체의 소결겨동)

  • 이정아;김정주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.718-724
    • /
    • 1999
  • Densification and grain growth behavior of bimodal size distributed alumina powder mixtures were investigated as a function of amount of coarse alumina powder. The specimens which contained coarse alumina powder for 60to 80wt% showed the highest green density. The amount of shrinkage of sintered specimen lineraly decreased with the increase of coarse alumina powder up to the content that showed the highest green density and then further addition of coarse alumina powder led to drastic decrease of shrinkage of specimen. Especially crack-like void were concurrently revealed in the sintered body with addition of coarse alumina powder above 60wt% When the sintering temperature increased up to 1650$^{\circ}C$ the amount of shrinkage of specimen linearly decreased and the grain growth were also retarded with increase of coarse lauminia powder.

  • PDF

Compaction and Sintering Behavior of Zirconia Powders : II. Sintering Behaviour (지르코니아 분말의 치밀화와 소결거동 : II. 소결거동)

  • Park, H.C.;Kim, K.;Kim, Y.W.;Lee, Y.B.;Oh, K.D.;Riley, Frank L.
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.449-456
    • /
    • 1993
  • Sintering behaviour of zirconia powders prepared by different processing treatment was discussed. About >99% densities of theoretical were obtaiend on sintering at 140$0^{\circ}C$ for 2h in case of 300MPa uniaxially cold-pressed compact. But the lower densities were obtained on sintering above this temperature due to abnormal grain growth enabling the tetragonal to monoclinic phase transformation during cooling resulted in microcracks. All kinds of different dried powders exhibited nearly the same shrinkage behaviour with end-point shrinkage between 19 and 20%, and had maximum shrinkage rate (0.99~1.27%/min) around 120$0^{\circ}C$. During whole sintering process densification was mainly governed by grain growth and rearrangement of agglomerates. Heterogeneous abnormal grain growth and abrupt decrease in shrinkage were observed when continuous interagglomerate pore collapsed into isolated pores.

  • PDF