• Title/Summary/Keyword: sintering process

Search Result 1,425, Processing Time 0.027 seconds

A Study on the Thermal and Electrical Properties of Fabricated Mo-Cu Alloy by Spark Plasma Sintering Method (방전 플라즈마 소결법으로 제작한 Mo-Cu 합금의 열적, 전기적 특성)

  • Lee, Han-Chan;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1600-1604
    • /
    • 2017
  • Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile and many other applications due to their excellent physical and electronic properties. Especially, Mo-Cu composites with 5~20 wt% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength and prominent electrical and thermal conductivity. In most of the applications, high dense Mo-Cu materials with homogeneous microstructure are required for high performance, which has led in turn to attempts to prepare ultra-fine and well-dispersed Mo-Cu powders in different ways, such as spray drying and reduction process, electroless plating technique, mechanical alloying process and gelatification-reduction process. However, most of these methods were accomplished at high temperature (typically degree), resulting in undesirable growth of large Cu phases; furthermore, these methods usually require complicated experimental facilities and procedure. In this study, Mo-Cu alloying were prepared by planetary ball milling (PBM) and spark plasma sintering (SPS) and the effect of Cu with contents of 5~20 wt% on the microstructure and properties of Mo-Cu alloy has been investigated.

A Study on Fabrication of 3D Hydroxyapatite Scaffolds Using a Laser Sintering Deposition System (레이저 소결 적층 시스템을 이용한 3차원 수산화인회석 인공지지체 제작에 관한 연구)

  • Choi, Seung-Hyeok;Sa, Min-Woo;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • Calcium-phosphate-based bioceramics are promising biomaterials for scaffolds because they can assist in bone regeneration. In this study, a laser sintering deposition system was developed, and 3D hydroxyapatite (HA) scaffolds were fabricated. The main process conditions of the HA scaffolds were laser power, table velocity, and laser focal distance. As the laser power increased, the line width, line height, and layer thickness also increased. Further, the line width, line height, and layer thickness decreased as the table velocity increased. As the laser focal distance increased, the line width increased, but the line height and layer thickness decreased. The fabricated green scaffolds were sintered at 1050 ℃ and 1150 ℃. The sintered scaffolds had a uniform and continuous interconnected shape, with pore sizes ranging from 850 to 950 ㎛ having 53% porosity. The compressive strength of the scaffolds decreased from 0.72 MPa (1050 ℃) to 0.53 MPa (1150 ℃). The biocompatibility of the scaffolds was investigated by analyzing the adhesion of osteoblast-like MG-63 cells cultured on the surfaces of the scaffolds. The results indicate that the scaffold sintered at 1050 ℃ had good mechanical and biological properties compared to that at 1150 ℃.

The Influence of Compaction Pressure and Sintering Temperature on Density and Dimension of n Powder Metallurgy Product (분말야금 공정 중 성형압력과 소결 온도가 밀도와 치수에 미치는 영향)

  • Cho, J.H.;Kwon, Y.S.;Chung, S.T.;Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.347-351
    • /
    • 2007
  • The influence of compaction pressure and sintering temperature on the hydraulic cylinder block fabricated by powder metallurgy is investigated in this study. The cylinder block is powder compacted under various compaction pressures and sintered under various sintering temperatures, and its density and dimensions are measured to reveal the relation of the process condition with the product quality. Moreover, finite element analyses of the density distributions are conducted under the same conditions with the experiments and the predicted results are compared with the measured ones.

  • PDF

Role of CaO in the Sintering of 12Ce-TZP Ceramics (12Ce-TZP 세라믹스의 소결에서의 CaO의 역할)

  • 박정현;문성환;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.265-272
    • /
    • 1992
  • Role of CaO in the sintering of 12Ce-TZP ceramics was studied. The addition of small amounts of CaO increase the densification rate of 12Ce-TZP by altering lattice defect structure and the diffusion coefficient of the rate controlling species, namely cerium and zirconium cations. CaO also inhibits grain growth during sintering and allows the sintering process to proceed to theoretical density by maintaining a high diffusion flux of vacancies from the pores to the grain boundaries. The inhibition of grain growth is accomplished by the segregation of solute at the grain boundaries, causing a decrease in the grain boundary mobility. The segregation of calcium was revealed by AES study.

  • PDF

Growth of Elongated Grains in $\alpha$'-Sialon Ceramics ($\alpha$'-Sialon 세라믹스에서의 주상형 입자성장)

  • 신익현
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.246-250
    • /
    • 1999
  • The effects of the ${\beta}-Si_3N_4$ starting particle size and $\alpha$/$\beta$ phase transformation during sintering process on the microstructure evolution of Yttrium $\alpha$-Sialon ceramics were investigated. As-received ${\beta}-Si_3N_4$ powder (mean particle size: 0.54$\mu$m) and classified ${\beta}-Si_3N_4$ powder(mean particle size: $0.26\mu{m}$) were used as starting powders. With decreasing the starting particle size, the growth of elongated grains was enhanced, which resulted in the whisker -like microstructure with elongated grains. These results were discussed in relation to the two-dimensional nucleation and growth theory. In the specimen heat treated at $1600^{\circ}C$ for 10h before sintering at $1950^{\circ}C$for 1h under 40atm(2-step sintering), the grain size was smaller than of the 1-step sintering at 195$0^{\circ}C$ for 1h. However, bimodal microstructure evolution were not not remarkable in both sample, which is ascribed to the $\alpha$-phase contents existing in ${\beta}-Si_3N_4$ starting powder.

  • PDF

Prediction of Combustion and Heat Transfer in the Sintering Bed of Iron Ore (제철 소결공정의 철광석-코크스 베드에서의 연소와 열전달 해석)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.161-168
    • /
    • 2001
  • Sintering bed of iron ore in the steel making process is one of typical applications of solid fuel bed, which has relatively uniform progress of fuel and simple processes of combustion. The sintering bed was modelled as an unsteady one-dimensional progress of fuel layer containing the two phases of solid and gas. Cokes added to the raw mix of which the amount is about 3.5% of the total weight was assumed to form a single particle with other components. In the early predition results presented in this paper, the flame propagation within the bed was not sustained after the top surface of the bed was ignited with hot gas. It suggests that the model should be extended to consider the multiple solid phase, which can treat the ore particles and the coke particles separately.

  • PDF

Fabrication and Evaluation of WC-3 wt%Co Compacts Fabricated by Spark Plasma Sintering (방전플라즈마소결법을 이용한 WC-3 wt%Co 소결체 제조 및 평가)

  • Choi, Jung-Chul;Chang, Se-Hun;Cha, Young-Hoon;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.357-361
    • /
    • 2008
  • Microstructure and mechanical properties of WC-3 wt% Co cemented carbides, fabricated by a spark plasma sintering (SPS) process, were investigated in this study. The WC-3 wt%Co powders were sintered at $900{\sim}1100^{\circ}C$ for 5min under 40MPa in high vacuum. The density and hardness were increased as the sintering temperature increased. WC-3 wt%Co compacts with a relative density of 97.1% were successfully fabricated at $1100^{\circ}C$. The fracture toughness and hardness of a compact sintered at $1100^{\circ}C$ were $21.6 MPa{\cdot}m^{1/2}$ and 4279 Hv, respectively.

$\beta$-SiC Formation Mechanisms in Si Melt-C-SiC System (용융 Si-C-SiC계에서 $\beta$-SiC 생성기구)

  • 서기식;박상환;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.655-661
    • /
    • 1999
  • ${\beta}$-SiC formation mechanism in Si melt-C-SiC system with varying in size of carbon source was investigated. A continuous reaction sintering process using Si melt infiltration method was adopted to control the reaction sintering time effectively. It was found that ${\beta}$-SiC formation mechanism in Si melt-C-SiC system was directly affected by the size of carbon source. In the Si melt-C-SiC system with large carbon source ${\beta}$-SiC formation mechanism could be divided into two stages depending on the reaction sintering time: in early stage of reaction sintering carbon dissolution in Si melt and precipitation of ${\beta}$-SiC was occurred preferentially and then SIC nucleation and growth was controlled by diffusion of carbon throughy the ${\beta}$-SiC layer formed on graphite particle. Furthmore a dissolution rate of graphite particles in Si melt could be accelerated by the infiltration of Si melt through basal plane of graphite crystalline.

  • PDF

Modified PZT System for Pyroelectric IR Sensor (Modified PZT계 초전형 적외선 센서개발)

  • 황학인;박준식;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.863-870
    • /
    • 1996
  • Fabricated modified PZT system for pyroelectric IR sensor were analyzed and characterized for dielectric piezoelectric and pyroelectric properties. Particle size and distribution of source powders were controlled by attrition milling process. 0.05PSS+yPT+(0.95-y)PZ+0.4 wt%MnO2 system was fabricated and investigated sintering density crystal structure and micro-structure through sintering conditions sintering temperature and sintering atmosphere. The poled sintered system of y=0.11 showed the lowest dielectric constant. The dielectric constants were increased with increasing y-mole ratio. The pyroelectric properties of modified PZT systems which were assembled to TO-5 package were measured by IR measurement system average out-voltage of 0.05PSS+0.1PT+0.84PZ+ wt%MnO2 was 3V.

  • PDF

The Sintering Behavior of $ZrB_2$-ZrC Composites Sintered by Spark Plasma Sintering Process (방전플라즈마 소결법에 의한 $ZrB_2$-ZrC 복합체의 소결 거동)

  • 심광보;김경훈
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.6
    • /
    • pp.582-586
    • /
    • 2001
  • 방전 플라즈마 소결법을 이용하여 ZrB$_2$-ZrC 복합체를 소결하여 소결 거동과 미세구조에 대하여 조사하였다. 소결 조제로서 란타늄을 첨가하였을 경우에 첨가하지 않았을 경우보다 더 낮은 온도에서 소결 수축이 시작되었으며, 180$0^{\circ}C$에서 거의 치밀화가 완성되었다. 란타늄은 방전플라즈마 소결시 초기 분말 간 액상 형성으로 물질이동을 가속화하여 ZrB$_2$-ZrC 복합체의 치밀화에 커다란 기여를 하며, 냉각 시에 재결정화하여 결정립계와 결정립 삼중점에 란타늄이 포함된 이차상을 형성하는 것으로 확인되었다. 또한 ZrB$_2$-ZrC는 강한 공유결합성 재료임에도 불구하고 미세 구조 내에 잘 발달된 전위 구조를 형성하고 있음을 확인하였다.

  • PDF