• Title/Summary/Keyword: sintering process

Search Result 1,426, Processing Time 0.029 seconds

Stable Defect Structure of La2O3-Modified BaTiO3 (La$_2O_3$-변형 BaTi$O_3$의 안정한 결함구조)

  • Kim, Jeong Su;Park, Hyu Beom;An, Tae Ho;Kim, Si Jung
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.309-318
    • /
    • 1994
  • The stable defect structure and the single phase region of La$_2O_3$-modified BaTi$O_3$ have been studied by X-ray diffractometer and scanning electron microscope. The stable defect structure of La$_2O_3$-modified BaTi$O_3$ has been identified as [($Ba^x_{Ba})_{1-2x}(La{\cdot}_{Ba})_{2x}][Ti^x_{Ti})_{1-x/2}(V""_{Ti})_{x/2}]O_3$ which consists of La$^{3+}$ ion substitution for Ba$^{3+}$ ion in the lattice structure and the formation of Ti vacancies for the charge compensation. When 3 mol% of La$_2O_3{\cdot}3/2TiO_3$ was added to BaTi$O_3$, the unit cell structure was transformed from tetragonal to cubic and the solubility limit was about 14 mol%. When La$_2O_3{\cdot}3/2TiO_2$ was added above this solubility limit, the second phase, La$_4Ba_2Ti_5O_{18}$, was formed. In the La$_2O_3$-modified BaTi$O_3$, it was found by the liquid phase sintering process that the sinterability was decreased by excess BaO but increased by excess Ti$O_2$.

  • PDF

Characteristics of Silica Coated ${\gamma}-Fe_{2}O_{3}$ with Heat-treatment (열처리에 따른 실리카 피착 ${\gamma}-Fe_{2}O_{3}$의 특성)

  • Lee, J.Y.;Byeon, T.B.;Kim, D.Y.;Lee, H.;Han, K.H.;Sohn, J.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.108-114
    • /
    • 1993
  • This paper presents a study on the effects of silica coating in the production of ${\gamma}-Fe_{2}O_{3}$ powders suitable for magnetic recording media. Emphasis has been put on investigating the relationship between the powder characteristics and the effects of silica coating in the heat-treatment stage of ${\gamma}-Fe_{2}O_{3}$ production. After we prepared non-coated ${\gamma}-Fe_{2}O_{3}$ and silica coated ${\gamma}-Fe_{2}O_{3}$ with coating water glass on the surface of goethite and heattreatment process, we compared and investigated powder characteristics. As silica coated layer played a role of preventing the powders from overreduction to metal iron and rapid oxidation, silica coated ${\gamma}-Fe_{2}O_{3}$ showed superior magnetization value due to inhibiting t!1e adulteration of ${\alpha}-Fe_{2}O_{3}$ into the final product. When silica coated layer acted as a sintering restrainer, silica coated ${\gamma}-Fe_{2}O_{3}$ showed high coercivity and specific sur-face area due to good acicularity.

  • PDF

Numerical Study to Develop Low-NOx Multi-nozzle Burner in Rotary Kiln (로터리 킬른용 Low-NOx 다공노즐버너 개발을 위한 수치해석적 연구)

  • Ahn, Seok-Gi;Kim, Jin-Ho;Hwang, Min-Young;Kim, Gyu-Bo;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.130-140
    • /
    • 2014
  • Rotary kiln burner has been developed continuously to improve process efficiency and exhaust emission. In this study, the characteristics of the flame and exhaust emission were numerically analyzed according to the diameter of primary air nozzle, equivalent ratio of burner, and equivalent ratio at center and side nozzle for development of multi-nozzle burner in the COG(Coke Oven Gas) rotary kiln for sintering iron ore. The results indicated that the flame length and $NO_x$ emission increase, as the diameter of primary air nozzle and equivalent ratio of burner increase. And according to the change of equivalent ratio at the center and the side of the nozzle, the flame length and average temperature in the kiln show very little change but the $NO_x$ emission shows obvious difference. In conclusion, the best design conditions which have satisfying flame length, average temperature and $NO_x$ emission are as follows: $D_2/D_1$ is 1.33, equivalent ratio of burner is 1.25 and center nozzle conditions are Rich.

Study of Gasless Combustion Synthesis of the Ti$Si_x$ (x = 0.6, 0.8, 1.0, 2.0) Systems (Ti$Si_x$ (x = 0.6, 0.8, 1.0, 2.0) 계의 비기체 합성법에 관한 연구)

  • Chul Hyun Yo;Sung Joo Lee;Eun Seok Lee;Pyon Mu Sil;Eung Ju Oh
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.337-342
    • /
    • 1989
  • Gasless combustion is a vigorous exothermic reaction ignited directly in solid mixture, similar to Thermit reaction. The gasless combustion synthesis has the advantages of rapid processing, energy saving, low processing cost, and high purity of products. The Ti$Si_x$(x = 0.6, 0.8, 1.0, 2.0) systems are prepared by the gasless combustion synthesis without external sintering process. The crystallographic structures of $Ti_5Si_3$, $Ti_5Si_4$ are hexagonal and tetragonal system, respectively. Those of TiSi, $TiSi_2$ are orthorhombic systems. The results of X-ray analysis agree with the JCPDS data. The combustion modes of all combustion reactions are steady state combustions, and the propagation velocities of the combustion waves of $Ti_5Si_3$, $Ti_5Si_4$ and TiSi are greater than 0.6 cm/sec and that of $TiSi_2$ is 0.28 cm/sec.

  • PDF

Fabrication of Gd1.5Ba2Cu3O7-y Bulk Superconductors from the Powder Synthesized by a Solid-State Reaction Method (고상반응법으로 합성한 분말로부터 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 제조)

  • Kim, Yong Ju;Park, Seung Yeon;You, Byung Youn;Park, Soon-Dong;Kim, Chan-Joong
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.309-315
    • /
    • 2013
  • $GdBa_2Cu_3O_{7-y}$(Gd123) powders were synthesized by the solid-state reaction method using $Gd_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The synthesized Gd123 powder and the Gd123 powder with $Gd_2O_3$ addition ($Gd_{1.5}Ba_2Cu_3O_{7-y}$(Gd1.5)) were used as raw powders for the fabrication of Gd123 bulk superconductors. The Gd123 and Gd1.5 bulk superconductors were fabricated by sintering or a top-seeded melt growth (TSMG) process. The superconducting transition temperature ($T_{c,onset}$) of the sintered Gd123 was 93 K and the transition width was as large as 20 K. The $T_{c,onset}$ of the TSMG processed Gd123 was 82 K and the transition width was also as large as 12 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Gd123 and TSMG processed Gd123 were as low as a few hundreds A/$cm^2$. The addition of 0.25 mole $Gd_2O_3$ and 1 wt.% $CeO_2$ to Gd123 enhanced the $T_c$, $J_c$ and magnetic flux density (H) of the TSMG processed Gd123 sample owing to the formation of the superconducting phase with high flux pinning capability. The $T_c$ of the TSMG processed Gd1.5 was 92 K and the transition width was 1 K. The $J_cs$ at 77 K (0 T and 2 T) were $3.2{\times}10^4\;A/cm^2$ and $2.5{\times}10^4\;A/cm^2$, respectively. The H at 77 K of the TSMG-processed Gd1.5 was 1.96 kG, which is 54% of the applied magnetic field (3.45 kG).

Investigation of alumina(Al2O3) 3D nozzle printing process (알루미나(Al2O3)를 활용한 3D 노즐 프린팅 기술 연구)

  • An, Tae-Kyu;Han, Kyu-Sung;Kim, Ji-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.247-253
    • /
    • 2019
  • 3D printing technology has attracted considerable attention because of its potential to fabricate the intricate design of ceramic products. In this study, ceramic 3D nozzle printing was introduced to manufacture complex alumina products with a ceramic pigment. The alumina paste was formulated by incorporating an elastomer to impart viscoelastic properties. Viscoelastic pastes play an essential role in ceramic 3D nozzle printing. The effects of the viscoelastic properties of the ceramic pastes on their printability were assessed using comprehensive rheological analysis, and various shapes were printed. As a result, the paste with a high yield stress showed better printability. In addition, a ceramic pigment was added to the developed pastes to increase the aesthetics of the printed ceramic structure. The printed ceramic parts were sintered in air at 1300 ℃. The stability of the ceramic pigment was confirmed even after high-temperature sintering.

Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones

  • Lim, Ki-Taek;Kim, Jin-Woo;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.227-234
    • /
    • 2014
  • Purpose: The aim of this research was to develop and evaluate natural hydroxyapatite (HA) ceramics produced from the heat treatment of pig bones. Methods: The properties of natural HA ceramics produced from pig bones were assessed in two parts. Firstly, the raw materials were characterized. A temperature of $1,200^{\circ}C$ was chosen as the calcination temperature. Fine bone powders (BPs) were produced via calcinations and a milling process. Sintered BPs were then characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, and a 2-year in vitro degradability test. Secondly, an indirect cytotoxicity test was conducted on human osteoblast-like cells, MG63, treated with the BPs. Results: The average particle size of the BPs was $20{\pm}5{\mu}m$. FE-SEM showed a non-uniform distribution of the particle size. The phase obtained from XRD analysis confirmed the structure of HA. Elemental analysis using XRF detected phosphorus (P) and calcium (Ca) with the Ca/P ratio of 1.6. Functional groups examined by FTIR detected phosphate ($PO{_4}^{3-}$), hydroxyl ($OH^-$), and carbonate ($CO{_3}^{2-}$). The EDX, XRF, and FTIR analysis of BPs indicated the absence of organic compounds, which were completely removed after annealing at $1,200^{\circ}C$. The BPs were mostly stable in a simulated body fluid (SBF) solution for 2 years. An indirect cytotoxicity test on natural HA ceramics showed no threat to the cells. Conclusions: In conclusion, the sintering temperature of $1,200^{\circ}C$ affected the microstructure, phase, and biological characteristics of natural HA ceramics consisting of calcium phosphate. The Ca-P-based natural ceramics are bioactive materials with good biocompatibility; our results indicate that the prepared HA ceramics have great potential for agricultural and biological applications.

Influence of Addition Amount of CaCO3on the Synthesizing behavior and Microstructural Evolution of CaZrO3 and m-ZrO2 in 5ZrSiO4-xCaCO3 Mixture System (5ZrSiO4-xCaCO3 혼합계에서 CaCO3첨가량이 CaZrO3와 m-ZrO2의 합성 및 미세구조변화에 미치는 영향)

  • Kim, Jae-Won;Lee, Jae-Ean;Jo, Chang-Yong;Lee, Je-hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.572-580
    • /
    • 2003
  • Synthesizing behavior and microstructural evolution of $CaZrO_3$and $m-ZrO_2$in a thermal reaction process of $ZrSiO_4$-$xCaCO_3$mixtures, where x is 7 and 19, were investigated to determine the addition amount of CaO in CaO:$ZrO_2$:$SiO_2$ternary composition. CaZrO$_3$-Ca$_2$SiO$_4$precursor prepared by the mixture of $ZrSiO_4$and CaCO$_3$in aqueous suspending media was controlled to the acidic (pH=4.0) condition with HCI solution to enhance the thermal reaction. The addition amount of dispersant into the $ZrSiO_4$-$xCaCO_3$slip increased with increasing mole ratio of $CaCO_3$, which was associated with the viscosity of slip. Decarbonation reaction was activated with an increase of the addition amount of $CaCO_3$, showing different final temperatures in $ZrSiO_4$-$7CaCO_3$and $ZrSiO_4$-$19CaCO_3$mixtures as about 980 and 116$0^{\circ}C$, respectively, for finishing decarbonation reaction. The grain morphology was changed to spherical shape for all samples with an increase of sintering temperature. The grain size and phase composition of the synthesized composites depended on the mixture ratio of Zrsi04 and CacO3 powders, indicating that the main crystals were m-ZrO2 ($\leq$3 $\mu\textrm{m}$) and $CaZrO_3$ ($\leq$ 7 $\mu\textrm{m}$) in $ZrSiO_4$$>-7CaCO_3$and $ZrSiO_4$-$19CaCO_3$mixtures, respectively.

Fabrication and Characterization of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ Oxygen Permeation Membranes Prepared with Different Powders ($La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ 산소 투과 분리막의 제조 및 특성)

  • Lim, Kyoung-Tae;Lee, Kee-Sung;Han, In-Sub;Seo, Doo-Won;Hong, Kee-Seog;Bai, Kang;Woo, Sang-Kuk;Cho, Tong-Lae
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.886-893
    • /
    • 2001
  • We synthesized $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ powders by coprecipitation, citration and solid-state reactions. The oxygen permeation membranes were fabricated by cold isostatic pressing of the synthesized powders, followed by sintering in air. All powders and membranes consist of perovskite phases. The coprecipitated powders showed the highest surface area ($7.5m^2/g$) but strontium deficiency was found during washing and filtering in the process. The membrane with lower relative density was fabricated by citration method. On the other hand, solid state reacted powders had high relative density (95%), and mechanical properties showed superior properties. Especially, the composition of the solid-state reacted powders was relatively well-controlled.

  • PDF

Preparation of B4C-Al2O3 Composite Powder by Self-propagation High-temperature Synthesis(SHS) Process under High Pressure (고압 자전 고온반응 합성법에 의한 B4C-Al2O3복합분말 제조)

  • 임경란;강덕일;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.18-23
    • /
    • 2003
  • Composite powder of$B_4C-A1_2O_3$was prepared from a mixed powder of$B_2O_3/A1/C$by SHS under argon pressure instead of using a chemical furnace. A mixture of$B_2O_3,$Al and C powder (equivalent amounts to the reaction,$2B_2O_3+4A1+C=B_4C+2A1_2O_3)$was ball milled for 2 h. The mixed powder was placed in a SHS reactor and filled with 10 atm of argon gas and ignited. The inner and outer products were the same by XRD analysis. It was consisted of a composite powder of$B_4C-A1_2O_3$without $AlB_{12}/C_2$which was always produced using a chemical furnace. The composite powder was about$60~100{mu}m$size which was composed of crystalline particles of about 0.3~l${mu}m$size. But when 15 atm of argon was employed, partial sintering took place to give rise hard composite powder of$15~25{mu}m$$B_4C$with $0.1~0.2{mu}m$$A1_2O_3.$