• Title/Summary/Keyword: sintering process

Search Result 1,425, Processing Time 0.03 seconds

Study on Reduction of Via hole Pore by Composition variation of Via paste during LTCC Constrained Sintering Process (무수축 LTCC 공정 중 Via Paste의 조성에 따른 Via 주변의 기공감소에 관한 연구)

  • Cho, Hyun-Min;Kim, Jong-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.233-234
    • /
    • 2006
  • In this paper, Via hole pore were investigated during PLAS (PessureLess Assisted Constrained Sintering) process of LTCC. Ag and Ag-Pd paste mixture were tested for via paste. Ag paste with 10~25% Ag-Pd paste showed no via hole pore, but further increase of Ag-Pd contents in via paste increased via pore. From shrinkage curve, 10~25% Ag-Pd paste showed expansion behaviors before shrink and this phenomena result in the reduction of via hole pore during PLAS process.

  • PDF

Barriers Ribs using Molds Prepared by Inclined UV Lithography

  • Kim, Ki-In;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.788-790
    • /
    • 2003
  • Closed-cell type barrier ribs of PDP were formed by capillary molding process using molds prepared by inclined UV lithography process. Various types of molds with different inclined angles were prepared by patterning SU-8 thick photoresist film and casting with PDMS. The ribs with various type cells were successfully formed by the process. The effects of inclined angle on the distortion of barrier ribs during sintering were investigated. The results indicated that the barrier ribs with a draft angle and dimensional change does not affect the distortion of the barrier ribs during sintering, suggesting that the closed-cell must be isotropic in sintering shrinkage.

  • PDF

Fabrication of SiC/SiC Composites by Reaction Sintering Process (반응소결법에 의한 SiC/SiC 복합재료의 제조)

  • Lee, S.P.;Yoon, H.K.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.27-31
    • /
    • 2001
  • Hi-Nicalon SiC fiber reinforced SiC composites (SiC/SiC) have been fabricated by the reaction sintering process. Braided Hi-Nicalon SiC fiber with double interphases of BN and SiC was used in this composite system. The microstructures and the mechanical properties of reaction sintered SiC/SiC composites were investigated through means of electron microscopies (SEM, TEM, EDS) and bending tests. The matrix morphology of reaction sintered SiC/SiC composites was composed of the SiC phases that the composition of the silicon and the carbon is different. The TEM analysis showed that the residual silicon and the unreacted carbon were finely distributed in the matrix region of reaction sintered SiC/SiC composites. Reaction sintered SiC/SiC composites also represented proper flexural strength and fracture energy, accompanying the noncatastrophic failure behavior.

  • PDF

Factors affecting fracture of full contour monolithic zirconia dental prosthesis in laboratory process (구치부 심미수복, 풀지르코니아 크라운의 파절원인과 그 해결방안)

  • Lee, Soo Young
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.77-79
    • /
    • 2014
  • There are several factors affected fractures of full contour zirconia (FCZ) dental prosthesis in laboratory process. First, residual moisture can cause zirconia cracks. Complete dry is requisite before zirconia sintering to prevent zirconia cracks. Second, slow cooling rate is essential to prevent cracks during zirconia sintering process. Cracks in bridge pontic area, thick dental implant prosthesis can be prevented by slow cooling rate such as 3 degree Celsius per minute during zirconia sintering. Third, slow heating rate and slow cooling rate during staining and glazing procedure is necessary to inhibit thermal shock of sintered dental zirconia. Lower preheat temperature of porcelain furnace is recommended. Finally, using diamond disc to open embrasure can lead cracks.

Microstructural Change and Sintering Behavior of W-Cu Composite Powders Milled by 3-Dimensional Mixer (3차원 혼합기로 볼밀링한 W-Cu 복합분말의 미세구조 변화와 소결거동)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.210-219
    • /
    • 1998
  • The W-Cu composite powders were synthesized from W and Cu elemental powders by ball-milling process, and their microstructural changes and sintering behaviors were evaluated. The ball milling process was carried out in a 3-dimensional mixer (Turbula mixer) using zirconic ($ZrO_2$) ball and alumina ($Al_2O_3$) vial up to 300 hrs. The ball-milled W-Cu powders revealed nearly spherical shape. Microstructure of the composite powders showed onion-like structure which consists of W and Cu shells due to the moving characteristic of Turbula mixer. The W and Cu elements in the composite powders milled for 300 hrs were homogeneously distributed, and W grain size in the ball-milled powder was smaller than 0.5 $\mu\textrm{m}$. Fe impurity introduced during ball milling process was very low as of 0.001 wt%. The relative sintered density of ball-milled W-Cu specimens reached about 94% after sintering at $1100^{\circ}C$.

  • PDF

Effect of Process Parameters on Forming Characteristics of Selective Laser Sintered Fe-Ni-Cr Powder (Fe-Ni-Cr 분말의 선택적 레이저 소결 적층시 공정변수에 따른 조형특성)

  • Joo, B.D.;Jang, J.H.;Yim, H.S.;Son, Y.M.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.262-267
    • /
    • 2009
  • Selective laser sintering is a kind of rapid prototyping process whereby a three-dimensional part is built layer wise by laser scanning the powder. This process is highly influenced by powder and laser parameters such as laser power, scan rate, fill spacing and layer thickness. Therefore a study on fabricating Fe-Ni-Cr powder by selective laser sintering has been performed. In this study, fabrication was performed by experimental facilities consisting of a 200W fiber laser which can be focused to 0.08mm and atmospheric chamber which can control atmospheric pressure with argon. With power increase or energy density decrease, line width was decreased and line surface quality was improved with energy density increase. Surface quality of quadrangle structure was improved with fill spacing optimization.

Making Alumina Microcomponents from Al Powder

  • Kim, J.S.;Jiang, K.;Falticeanu, L.;Daviesd, G.J.;Chang, I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.864-865
    • /
    • 2006
  • Alumina microcomponents have distinguishing advantages over Si counterpart. However, the shrinkage of alumina, as high as 20%, makes it difficult to produce precision components meeting a high tolerance. A new fabrication process presented to greatly reduce the shrinkage by producing alumina microcomponents from ultrafine Al powder. The process consists of forming Al powder components through sintering and turning the Al powder component into alumina. In this way, the shrinkage occurring in sintering the Al powder component will be compensated by the expansion appearing when the Al powder component turns into alumina. The process has proven successful.

  • PDF

Preparation of Porous Glass by the Sintering (소결법에 의한 다공질유리의 제조)

  • 박용완;이준영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.957-968
    • /
    • 1994
  • Manufacturing process of porous glass by the filler method was studied. Commercial soda-lime-silicate glass powder was mixed with inorganic salt as the filler such as KCl, K2SO4, Na2SO4. Sintering shrinkages of mixed powders with the variation of sintering temperature were compared, and the effects of the fillers to shrinkages of mixed powder were increased in the order of Na2SO4${\mu}{\textrm}{m}$ of pore diameter were manufactured when the filler sizes 100~200 ${\mu}{\textrm}{m}$. The open pore volume of porous glass is determined by the quantity of filler and porous glasses having open pore volume between 30 and 70 vol% are available. Available sintering temperature range for preparation of porous glass is from the softening temperature of the glass powder to eutectic melting temperature of DTA curve of mixed powder.

  • PDF

A Study on the Combustion Characteristics of Coke and Anthracite in an Iron Ore Sintering Bed (소결층 내에서의 코크스와 무연탄의 연소 특성 비교 연구)

  • Yang, Won;Yang, Kwang-Hcok;Choi, Sang-Min;Choi, Eung-Soo;Ri, Deok-Won;Kim, Sung-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.141-148
    • /
    • 2004
  • Coal combustion in an iron ore sintering bed is a key parameter that determines quality of the sintered ores and productivity of the process. In this study, effects of the different types of coal coke and anthracite - on the combustion in the iron ore sintering bed are investigated by modeling and experiment. Fuel characteristics of coke and anthracite are observed through a few basic analysis and thermo-gravimetric analysis. It was found that coke has a higher reactivity than anthracite due to the difference of surface area and density. Those characteristics are reflected to the 1-D unsteady simulation of the iron ore sintering bed. Calculation results show that different reactivity of the fuel can affect the bed combustion, which implies the further investigation should be performed for obtaining optimal combustion conditions in the sintering bed.

  • PDF

Simulation of Sintering for the Complex Ceramic Bodies by NASTRAN

  • Lee, Sang-Ki;Kim, Hyung-Jong;Lee, June-Gunn
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.235-238
    • /
    • 1999
  • In a ceramic green body, some degree of nonuniformity in density always presents. These differences in green density will appear as nonuniform shrinkage after sintering takes place. For the complex ceramic bodies with various curves and angles, therefore, it is quite difficult to foresee the final dimensions precisely after sintering. This simulation study shows that, considering the sintering process as a thermal shrinkage phenomenon, the use of NASTRAN enables to predict the precise shape of a sintered body. Based on this result, 'the reverse engineering technique' has been developed that can unfold the exact dimensions of a green body to have the desired shape after sintering. This approach will provide a simple and useful tool for ceramic engineers to fabricate complicate bodies with tight dimensional tolerances.

  • PDF