• Title/Summary/Keyword: sintering model

Search Result 129, Processing Time 0.022 seconds

The Structure Determination of La2/3-xLi3x1/3-2xTiO3 by the Powder Neutron and X-ray Diffraction

  • Kang, Eun-Tae;Kwon, Young-Jean
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.513-518
    • /
    • 2003
  • La/sub 2/3-x/Li/sub 3x/□/sub 1/3-2x/TiO₃ compounds with x=0.13 and 0.12 were prepared by slow cooling (x=0.13) and rapid quenching (x=0.12) into the liquid nitrogen after sintering at 1350℃ for 6 h. Their crystal structure has been determined by Rietveld refinement of both the powder neutron and X-ray diffraction data. From neutron diffraction data, we found that the main phase was not tetragonal (P4/mmm), but trigonal (R3cH). The refinement of neutron diffraction for the slow cooled samples were in a good agreement with a new model; a mixture of trigonal (R3cH, 45.7 wt%), tetragonal (p4/mmm, 37.0 wt%), and Li/sub 0.57/Ti/sub 0.86/O₂(pbnm, 17.2 wt%), but the quenched sample was found not to contain tetragonal (p4/mmm). X-ray diffraction data couldn't be well fitted because of the Poor scattering factor of lithium ions and the similar reflection patterns among trigonal (R3cH), tetragonal (p4/mmm), and cubic (Pm3m). We also knew that one transport bottlenecks is destroyed by one La vacancy in the case of trigonal (R3cH).

The fabrication of $MgB_2$/SUS Tapes by PIT Process

  • 송규정;이남진;장현만;하홍수;하동우
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.213-217
    • /
    • 2002
  • We have fabricated successfully single-filament composite $MgB_2$/SUS tapes, as an ultrarobust conductor type. The fabrication of the $MgB_2$/SUS tapes was performed by power-in-tube (PIT) process such as swaging and cold rolling. The critical transition temperatures $T_{c}$~38.5 K and ~36 K were observed for the sintered and the nonsintered $MgB_2$/SUS tapes, respectively In addition, the isothermal magnetization M(H) of the sintered $MgB_2$/SUS tapes was measured at temperatures T (between 5 and 50 K) in fields up to 6 T, employing a PPMS-9 (Quantum Design). The persistent current density (J$T_{P}$) values were obtained from the M(H) data, using Bean model, fur the sintered $MgB_2$/SUS tapes. The estimated values were higher than ~ 6$\times$ $10^{5}$ $A/\textrm{cm}^2$ at T = 5 K, with H : 0 G. We also investigated the cross section of the sintered tapes, by using SEM and EDX. An evidence of weak reaction on boundary between $MgB_2$ and SUS tube is found in the SEM and EDX.X.X.X.

  • PDF

A Study on the Effects of first and second additives Magnetic Characteristics of Anisotropic $SrO-5.7Fe_2O_3$. (1,2차 첨가제가 이방성 $SrO-5.7Fe_2O_3$의 자기적 특성에 미치는 효과)

  • Song, Joon-Tae;Shin, Yeong-Duck;Jeong, In-Young;Jin, Hong-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.239-242
    • /
    • 1990
  • The effect of $CaCo_3$, $SrCo_3$, $SiO_2$ and $H_3BO_3$ in the range of 0.1-1.0 wt% on strontium ferrites consisting of the magnetoplumbite phase $SrO-5.7Fe_2O_3$ were investigated. The hysteresis loop, density, demagnetization curve and the intrinsic coercive force were measured on anisotropic ferrite. The particle diameter and 0.5(wt%) of second additive $CaCo_3$ is particularly important for the properties of anisotropic ferrite. When the particle diameter is decreased from 1.98(${\mu}m$) to 1.07(${\mu}m$), the remance is increased from 2900 to 4010(G) and the coercive force from 2150 to 2850(Oe) at a sintering temperature 1230 ($^{\circ}C$). Remance Br(G), coercleve force(Oe) and maximum energy product of sample A-16 are87(%), 56(%), 67(%) of S-W model theoretical value.

  • PDF

Analysis of Coal Combustion and Particle Temperature Profiles in a Rotary Kiln for Production of Light-weight Aggregate (경량골재 로타리킬른의 운전최적화를 위한 석탄연소 및 원료입자 승온특성 해석)

  • Park, Jong-Keun;Ryu, Changkook;Kim, Young-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.18-25
    • /
    • 2014
  • Bottom ash from a coal-fired power plant is usually landfilled to a nearby site, which causes a growing environmental concern and increased operating costs. One way of recycling the bottom ash is to produce light-weight aggregate (LWA) using a rotary kiln. This study investigated the temperature profiles of raw LWA particles in a rotary kiln to identify the range of operating conditions appropriate for ideal bloating. For this purpose, a new simulation method was developed to integrate a 1-dimensional model for the bed of LWA particles and the computational fluid dynamics (CFD) for the fuel combustion and gas flow. The temperature of LWA particles was found very sensitive to the changes in the air preheating temperature and excess air ratio. Therefore, an accurate control of the operation parameters was essential to achieve the bloating of LWA particles without excessive sintering or melting.

Analysis and Design of Powder Metallurgy Process using Finite Element Method (유한요소법을 이용한 분말야금 공정 해석 및 설계)

  • Kwon Y. S.;Lee M. C.;Chung S. T.;Chung S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.241-244
    • /
    • 2005
  • Though the history of finite element analysis in field of powder metallurgy is not short, industrial engineer is still being dependent on the trial and error approach based on engineer's experience in selecting process conditions. This problem is mainly due to the difficulty in establishing models for the behavior of a powder compact during compaction and sintering as well as finding material parameters for the models and the absence of CAE software with which industrial engineer can easily investigate the effect of process conditions on the quality of product. Therefore, we established very simple and cheap procedure to find material parameters for powder compaction behavior and implemented it in self-developed commercial CAE software for powder metallurgy, PMsolver. Basically, the development strategy of PMsolver lies on simplification and convenience so as for industrial engineers to use it with least training. Using PMsolver, optimal process conditions were found for some geometry and powders. Prior to process condition design, the accuracy of finite element analysis was verified.

  • PDF

Investigation of Temperature-Dependent Microscopic Morphological Variation of PEEK Powder for a 3D Printer using Dissipative Particle and Molecular Dynamics Simulations (소산입자동역학과 분자동역학을 이용한 3D 프린터용 PEEK 분말에 대한 온도에 따른 미시적 구조변화에 대한 연구)

  • Kim, Namwon;Yi, Taeil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.117-122
    • /
    • 2018
  • 3D printing technology and its applications have grown rapidly in academia and industry. We consider a 3D printing system designed for the selective laser sintering (SLS) method, which is one of the powder bed fusion (PBF) techniques to build up the final product by layering sintered powder slices. Thermal distortion of printing products is a critical challenge in 3D printing. This study investigates temperature-dependent conformational behaviors of 3D printed samples of sintered poly-ether-ether-ketone (PEEK) powders using molecular dynamics simulations. The wear and chemical resistance properties of PEEK are understood, as it is a well-known biocompatible material used for implants. However, studies on physical phenomena at nanoscale in PEEK are rarely published in public. We simulate dissipative particle dynamics to elucidate how a cavity regime forms in PEEK at different system temperatures. We demonstrate how PEEK structures deform subject to the system temperature distribution.

Trends in Materials Modeling and Computation for Metal Additive Manufacturing

  • Seoyeon Jeon;Hyunjoo Choi
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.213-219
    • /
    • 2024
  • Additive Manufacturing (AM) is a process that fabricates products by manufacturing materials according to a three-dimensional model. It has recently gained attention due to its environmental advantages, including reduced energy consumption and high material utilization rates. However, controlling defects such as melting issues and residual stress, which can occur during metal additive manufacturing, poses a challenge. The trial-and-error verification of these defects is both time-consuming and costly. Consequently, efforts have been made to develop phenomenological models that understand the influence of process variables on defects, and mechanical/ electrical/thermal properties of geometrically complex products. This paper introduces modeling techniques that can simulate the powder additive manufacturing process. The focus is on representative metal additive manufacturing processes such as Powder Bed Fusion (PBF), Direct Energy Deposition (DED), and Binder Jetting (BJ) method. To calculate thermal-stress history and the resulting deformations, modeling techniques based on Finite Element Method (FEM) are generally utilized. For simulating the movements and packing behavior of powders during powder classification, modeling techniques based on Discrete Element Method (DEM) are employed. Additionally, to simulate sintering and microstructural changes, techniques such as Monte Carlo (MC), Molecular Dynamics (MD), and Phase Field Modeling (PFM) are predominantly used.

A Study on the Regeneration of Ni Catalyst for Hydrogenation(II) (수소첨가반응용 니켈 폐촉매의 활성재생에 관한 연구 (II))

  • Kim, Jung-Hun;Lee, Gun-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 1991
  • Regeneration of carbon-deposited Ni catalyst used for hydrogenation reaction was studied. Deposited carbon was removed by oxidation with various concentrations of oxygen. Activity of the catalysts was tested on aniline hydrogenation as a model reaction. When a carbon-deposited catalyst was treated under oxygen atmosphere, the specific surface area of the catalyst increased and then decreased with the increase of treatment temperature. The treatment temperature which gives maximum specific surface area increased with the decrease of oxygen concentration. Pore size of the support was decreased and sintering of nickel particles was more significant with the increase of oxygen concentration. The catalyst treated under 5 % oxygen concentration recovered its catalytic activity up to 90 % of the initial value, but the treatment under 20 % oxygen concentration gave no significant increase of the catalytic activity. Catalytic activity increased with treatment time when the catalyst was treated under 5 % oxygen concentration, but nearly constant after 1 hour.

  • PDF

A Study on NOx Emission Control Methods in the Cement Firing Process Using Data Mining Techniques (데이터 마이닝을 이용한 시멘트 소성공정 질소산화물(NOx)배출 관리 방법에 관한 연구)

  • Park, Chul Hong;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.739-752
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the relationship between kiln processing parameters and NOx emissions that occur in the sintering and calcination steps of the cement manufacturing process and to derive the main factors responsible for producing emissions outside emission limit criteria, as determined by category models and classification rules, using data mining techniques. The results from this study are expected to be useful as guidelines for NOx emission control standards. Methods: Data were collected from Precalciner Kiln No.3 used in one of the domestic cement plants in Korea. Thirty-four independent variables affecting NOx generation and dependent variables that exceeded or were below the NOx emiision limit (>1 and <0, respectively) were examined during kiln processing. These data were used to construct a detection model of NOx emission, in which emissions exceeded or were below the set limits. The model was validated using SPSS MODELER 18.0, artificial neural network, decision treee (C5.0), and logistic regression analysis data mining techniques. Results: The decision tree (C5.0) algorithm best represented NOx emission behavior and was used to identify 10 processing variables that resulted in NOx emissions outside limit criteria. Conclusion: The results of this study indicate that the decision tree (C5.0) can be applied for real-time monitoring and management of NOx emissions during the cement firing process to satisfy NOx emission control standards and to provide for a more eco-friendly cement product.

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF