• 제목/요약/키워드: sinking particle

검색결과 14건 처리시간 0.019초

북동태평양 한국 망간단괴 광구해역에서 환경충격 시험지역과 보존지역간의 수층환경 및 침강입자 플럭스 유사성 비교 (Evaluation of Similarity of Water Column Properties and Sinking Particles between Impact and Preserved Sites for Environmental Impact Assessment in the Korea Contracted Area for Manganese Nodule Development, NE Pacific)

  • 손주원;김경홍;김형직;주세종;유찬민
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.423-435
    • /
    • 2014
  • Verifying the similarity of environmental characteristics between an artificial impact site and a preserved or reference site is necessary to quantitatively and qualitatively evaluate the environmental impact of mining activity. Although an impact site (BIS station) and a preserved site (called KOMO station) that have been selected in the Korea manganese nodule contract area may share similar environmental characteristics, similarities in terms of the water column environment between both sites has not been investigated. In this study, we compared the chemical properties of the water columns and sinking particle fluxes between BIS and KOMO stations through two observations (August 2011 and September 2012). Additionally, we observed particle fluxes at the KOMO station for five years (July 2003~July 2008) to understand long-term natural variability. Vertical distributions of water column properties such as dissolved oxygen, inorganic nutrients (N, P, Si), total organic carbon below surface layer (within the depth range of 200 m) were not considerably different between the two sites. Especially, values of water column parameters in the abyssopelagic zone from 4000 m to bottom layer (~5000 m) were very similar between the BIS and KOMO sites. Sinking particle fluxes from the two sites also showed similar seasonality. However, natural variation of particle flux at the KOMO site varied from 3.5 to $129.9mg\;m^{-2}day^{-1}$, with a distinct temporal variation originating from ENSO events (almost forty times higher than a minimum value). These results could provide valuable information to more exactly evaluate the environmental impact of mining activity on water columns.

물 위에 사는 곤충의 부양과 가라앉음에 관한 연구 (Study on the Floating and Sinking of Insects Living on Water)

  • 이덕규;김호영
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.982-986
    • /
    • 2006
  • It is well known that the surface tension forces can make a particle denser than water float when the size of the particle is of the order of 1 mm. This is deeply related to the basic mechanism enabling small insects to wander around on the pond surface and also to a newly emerging technology of self-assembly using capillary forces. For the quantitative understanding of this effect, we experimentally study the maximum density of a cylinder that can float on water and how fast the cylinder sinks when the density exceeds the maximum value. We compare our experimental results with the theoretical prediction and find good agreement between them.

The Vertical Fluxes of Particles and Radionuclides in the East Sea

  • Moon, Deok-Soo;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • 제35권1호
    • /
    • pp.16-33
    • /
    • 2000
  • In order to measure the vertical fluxes of particles and reactive radionuclides such as thorium and polonium isotopes, Dunbar-type sediment traps were freely deployed at the Ulleung Basin and in warm and cold water masses around the polar front of the East Sea. We estimated the ratios of the catched (F) to the predicted $^234$Th fluxes (P) using natural tracers pair $^234$Th-$^238$U. The F/P ratios are decreased with increasing water depth. Whereas the concentrations of suspended particles are homogeneous in water column, the mass fluxes are also decreased with increasing water depth like the F/P ratios. These facts indicate that organic matters of settling particles are destructed within the euphotic layer due to decomposition. Whereas regenerations of sinking particles are negligible in the cold water mass, about 80% of them are regenerated in the warm water mass during falling of large particles. These downward mass fluxes are closely correlated with their primary productions in euphotic zone. The activities of $^234$Th, $^228$Th and $^210$Po in the sinking material were increased with water depth. Because $^234$Th steadily produced in the water column are cumulatively adsorbed on the surface of sinking particles, vertical $^234$Th fluxes were observed to increase with water depth. Therefore, these sinking particles play important roles in transporting the particle reactive elements like thorium from surface to the deep sea. The scavenging processes including adsorption and settling reactions generate radio-disequilibrium between daughter and parent nuclides in water column. The activity ratios of $^234$Th/$^238$U and $^228$Th/$^228$Ra were observed to be < 1.0 in the surface water and approached to be equilibrium below the thermocline. The extent of the deficiency of daughter nuclides compared to the parents nuclide was highly correlated with the vertical particle flux. Because most of the $^210$Po in the surface water are scavenged on a labile phase and are recycled at sub-surface depths (< 200 m), the $^210$Po are always observed to be excess activities compared to $^226$Ra in surface water.

  • PDF

북서태평양 아열대 해역에서 침강입자 플럭스의 시·공간 변동 (Temporal and Spatial Variations of Sinking-particle Fluxes in the Northwestern Subtropical Pacific)

  • 김형직;형기성;유찬민;전동철;정진현;김부근;김동선
    • Ocean and Polar Research
    • /
    • 제33권spc3호
    • /
    • pp.385-395
    • /
    • 2011
  • Time-series sediment traps were deployed at 1,000 m water depth of the northwestern subtropical Pacific from July 2009 to June 2010, with the aim of understanding temporal and spatial variations of sinking-particle fluxes. The opening and closing of the traps was synchronized at 18-day periods for 20 events. Total mass fluxes showed distinct seasonal variations with high values for the summer-fall seasons and relatively low values for winter-spring. This seasonal variation at two stations was characterized by a distinct difference in $CaCO_3$ fluxes between the two seasons. The enhanced $CaCO_3$ flux in the summer - fall seasons might be attributed to an increased planktonic foraminiferal flux. Total mass flux at FM10 station was nearly 50% higher than that at FM1 station. The difference in $CaCO_3$ fluxes between two stations contributed nearly 70% of the difference of total mass fluxes. The $CaCO_3$ flux was a major component controlling temporal and spatial variation of sinking - particle fluxes in the western subtropical Pacific Ocean.

CKD 치환율 및 증점안정화제 혼입율 변화에 따른 경량기포 콘크리트의 품질특성 (Quality Properties of Lightweight Foamed Concrete with Variances in Incorporating Ratio of CKD and Adding Ratio of Stability Agent)

  • 신현섭;유승엽;정광복;배장춘;김성수;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 추계 학술논문 발표대회 논문집
    • /
    • pp.67-70
    • /
    • 2006
  • This study investigates the properties of light weight foamed concrete designed with various incorporating ratios of CKD and adding ratios of PS. Test showed that increase of CKD and PS decreased fluidity of fresh concrete, which need more addition of superplasticizer to secure proper fluidity. As for the sinking depth of specimens, using more CKD or PS decreased the value, due to the improvement of viscosity by micro particles of CKD and reduction of air loss by PS. Those methods are very effective to solve the sinking problem of light weight foamed concrete, which has been highly concerned. For the hardened concrete, compressive strength of specimens exhibited that using around 10% of CKD or 0.02% of PS increased the strength value, but decreased when incorporated or added more amounts of that, due to reduction of the sinking depth, caused by filling effect of the micro particle and improvement of the viscosity.

  • PDF

동해 방사성탄소동위원소 연구 현황과 전망 (Current Status and Prospects Regarding Radiocarbon Studies in the East Sea)

  • 김민경
    • Ocean and Polar Research
    • /
    • 제44권1호
    • /
    • pp.99-111
    • /
    • 2022
  • Together with the development of measurement techniques, radiocarbon (14C) has been increasingly used as a key tool to investigate carbon cycling and associated biogeochemistry in the ocean. In this paper, the current status of radiocarbon studies in the East Sea (Japan Sea) is reviewed. Previously, spatiotemporal distribution and change of the water masses in the East Sea from 1979 to 1999 were investigated by using the 14C in the dissolved inorganic carbon (DIC). Researches on sinking particulate organic carbon (POC) revealed that POC in the deep ocean has more complex and heterogeneous origins than we expected. In particular, since 2011, Korean researchers have been collecting sinking particle samples for more than 10 years, so it is expected that 14C of POC will provide important information to understand carbon cycling in relation to climate change. Although the quantity of 14C data published in the East Sea is still limited, the importance and the future direction of using 14C to understand the biogeochemical mechanisms of carbon cycling and its role as a carbon reservoir in the East Sea are detailed herein.

열화학 황-요오드 수소 생산 공정의 요오드 결정화기 설계를 위한 결정 침강 모델링 (Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process)

  • 박병흥;정성욱;강정원
    • Korean Chemical Engineering Research
    • /
    • 제52권6호
    • /
    • pp.768-774
    • /
    • 2014
  • 황-요오드(Sulfur-Iodine, SI) 공정은 물을 분해시켜 수소를 생산하는 열화학 공정으로 공정에 사용되는 황과 요오드는 재순환된다. SI 공정 중 요오드가 분리 순환되는 Section III에서는 공정 효율 개선을 위해 다양한 방법이 개발되고 있다. EED(electro-electrodialysis)를 이용한 방법은 추가적인 화합물이 필요하지 않는 공정으로 Section III의 효율을 높일 수 있으나 공정 흐름에 포함된 요오드에 의해 상당한 부하가 걸리게 된다. 이를 해결하기 설계를 위한 기초 자료 제거 공정으로 결정화 방법이 고려되고 있다. 본 연구에서는 요오드 결정화 반응기 설계를 위한 기초 자료 확보를 위해 $I_2$ 포화 $HI_x$ 용액에서 요오드 결정의 침강 속도를 모델링 하였다. $HI_x$ 용액 조성은 열역학 모델인 UVa를 이용하여 결정하였으며 용액 물성은 순수한 물성들과 상관관계식을 활용하여 추산하였다. Multiphysics 전산툴을 이용하여 침강에 따른 속도 변화를 계산하였으며 요오드 직경과 온도에 따른 변화를 추산하였다. 직경(1.0~2.5 mm)과 온도($10{\sim}50^{\circ}C$) 범위에서 요오드는 0.5 m/s 내외의 종말 속도를 보이며 이 속도는 용액의 점도 보다 밀도에 더 크게 영향을 받는 것으로 나타났다.

경사계를 이용한 토립자 유출 관련 피해 시공 관리 사례 연구 (Case Study of Construction Management in Damage due to Soil Particle Migration Using Inclinometer Incremental Deflection)

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.268-275
    • /
    • 2006
  • Excavation works of cylindrical shafts and tunnels for the construction of a variety of infrastructures have been frequently going on in the urban areas. When ground excavations of cylindrical shafts and shallow tunnels proceed in the ground condition of high water level and silt particle component, ground water drawdown involving soil particle migration causes loosening of ground around tunnels and shafts, causes settlement and deformation of ground. Damages due to ground sinking and differential settlement can occur in the adjacent ground and structures. The extent and possibility of damage relevant to ground water drawdown and soil particle migration can't be so precisely expected in advance that we will face terrible damages in case of minor carefulness. This paper introduces two examples of construction management where using incremental deformation graph of inclinometer, we noticed the possibility of soil migration due to ground water drawdown in the excavation process of vertical shaft and shallow tunnel, analysed a series of measurement data in coupled connection, properly prepared countermeasures, so came into safe and successful completion of excavation work without terrible damages. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

동태평양 열대해역에서 2009-2010년 침강입자 플럭스의 수직 변화 (Vertical Variation of the Particle Flux in the Eastern Tropical Pacific from 2009 to 2010)

  • 김형직;조소설;김동선;김경홍;유찬민
    • Ocean and Polar Research
    • /
    • 제44권3호
    • /
    • pp.221-233
    • /
    • 2022
  • A sediment trap had been deployed at 1250 m depth in the Eastern Tropical Pacific (ETP) from September 2009 to July 2010, with the aim of understanding the temporal and vertical variability of particle flux. During the monitoring period, total particle flux varied from 12.4 to 101.0 mg m-2day-1, with the higher fluxes in January-March 2010. Biogenic particle flux varied in phase with the total particle flux. The increase in total particle flux during January-March 2010 was attributed to the enhanced biological production in the surface layer caused by wind-driven mixing in response to the seasonal shifts in the location of the Intertropical convergence zone. The export ratio (e-ratio) was estimated using the particulate organic carbon flux and satellite-derived net primary production data. The estimated e-ratios changed between 0.8% and 2.8% (1.4±0.6% on average). The ratio recorded in the negative phase of Pacific decadal oscillation (PDO) was similar to the previous results obtained from the ETP during the 1992/93 periods in the positive phase of PDO. This suggests that the regime shift of the PDO is not related to the carbon export ratio.

Downward particle flux in the eastern Bransfield Strait, Antarctica

  • Kim, Dongseon;Kim, Dong-Yup;Jeonghee Shim;Kang, Young-Chul;Kim, Taerim
    • Journal of the korean society of oceanography
    • /
    • 제38권1호
    • /
    • pp.1-10
    • /
    • 2003
  • A time-series sediment trap was deployed at a depth of 1034 m in the eastern Bransfield Strait from December 25, 1998 to December 24, 1999. Particle fluxes showed large seasonal variation; about 99% of the annual total mass flux (49 g m/sup -2/) was collected during the austral summer and fall (January-March). Settling particles consisted primarily of biogenic silica, organic carbon, calcium carbonate, and lithogenic material. Biogenic silica and lithogenic material predominated settling particles, comprising 36% and 30% of the total mass flux, respectively, followed by organic carbon, 11% and calcium carbonate, merely 0.6%. The annual organic carbon flux was 5.4 g C m/sup -2/ at 1000 m in the eastern Bransfield Strait, which is greater than the central Strait flux. The relatively lower flux of organic carbon in the central Bransfield Strait may be caused by a stronger surface current in this region. Organic carbon flux estimates in the eastern Bransfield Strait are the highest in the Southern Ocean, perhaps because of the fast sinking of fecal pellets, which leads to less decomposition of organic material in the water column. Approximately 5.8% of the organic carbon produced on the surface in the eastern Bransfield Strait is exported down to 1000 m; this percentage exceeds the maximum EF/sub 1000/ values observed in the Atlantic and Southern Oceans. The eastern Bransfield Strait appears to be the most important site of organic carbon export to the deep sea in the Southern Ocean.