DOI QR코드

DOI QR Code

Evaluation of Similarity of Water Column Properties and Sinking Particles between Impact and Preserved Sites for Environmental Impact Assessment in the Korea Contracted Area for Manganese Nodule Development, NE Pacific

북동태평양 한국 망간단괴 광구해역에서 환경충격 시험지역과 보존지역간의 수층환경 및 침강입자 플럭스 유사성 비교

  • Son, Juwon (Deep-sea and Seabed Mineral Resources Research Center, KIOST) ;
  • Kim, Kyeong Hong (Deep-sea and Seabed Mineral Resources Research Center, KIOST) ;
  • Kim, Hyung Jeek (Deep-sea and Seabed Mineral Resources Research Center, KIOST) ;
  • Ju, Se-Jong (Deep-sea and Seabed Mineral Resources Research Center, KIOST) ;
  • Yoo, Chan Min (Deep-sea and Seabed Mineral Resources Research Center, KIOST)
  • 손주원 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 김경홍 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 김형직 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 주세종 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 유찬민 (한국해양과학기술원 심해저광물자원연구센터)
  • Received : 2014.09.28
  • Accepted : 2014.12.03
  • Published : 2014.12.30

Abstract

Verifying the similarity of environmental characteristics between an artificial impact site and a preserved or reference site is necessary to quantitatively and qualitatively evaluate the environmental impact of mining activity. Although an impact site (BIS station) and a preserved site (called KOMO station) that have been selected in the Korea manganese nodule contract area may share similar environmental characteristics, similarities in terms of the water column environment between both sites has not been investigated. In this study, we compared the chemical properties of the water columns and sinking particle fluxes between BIS and KOMO stations through two observations (August 2011 and September 2012). Additionally, we observed particle fluxes at the KOMO station for five years (July 2003~July 2008) to understand long-term natural variability. Vertical distributions of water column properties such as dissolved oxygen, inorganic nutrients (N, P, Si), total organic carbon below surface layer (within the depth range of 200 m) were not considerably different between the two sites. Especially, values of water column parameters in the abyssopelagic zone from 4000 m to bottom layer (~5000 m) were very similar between the BIS and KOMO sites. Sinking particle fluxes from the two sites also showed similar seasonality. However, natural variation of particle flux at the KOMO site varied from 3.5 to $129.9mg\;m^{-2}day^{-1}$, with a distinct temporal variation originating from ENSO events (almost forty times higher than a minimum value). These results could provide valuable information to more exactly evaluate the environmental impact of mining activity on water columns.

Keywords

References

  1. Amador JA, Alfaro EJ, Lizano OG, Magana VO (2006) Atmospheric forcing of the eastern tropical Pacific: a review. Prog Oceanogr 69:101-142 https://doi.org/10.1016/j.pocean.2006.03.007
  2. Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem Cy 8:65-80 https://doi.org/10.1029/93GB03318
  3. Berelson WM (2002) Particle settling rates increase with depth in the ocean. Deep-Sea Res II 49:237-251
  4. Bostock HC, Opdyke BN, Williams MM (2010) Characterising the intermediate depth waters of the Pacific Ocean using ${\delta}^{13}C$ and other geochemical tracers. Deep-Sea Res I 57:847-859 https://doi.org/10.1016/j.dsr.2010.04.005
  5. Brzezinski MA (1985) The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21:347-357
  6. Chavez FP, Strutton PG, Friederich GE, Feely RA, Feldman GC, Foley DG, McPhaden MJ (1999) Biological and chemical response of the equatorial Pacific ocean to the 1997-1998 El Nino. Science 286:2126-2131 https://doi.org/10.1126/science.286.5447.2126
  7. Chung JS, Lee K, Tischler A, Yarim G (2001) Effect of particle size and concentration on pressure gradient in two-phase vertically upward transport. In: Proceedings 4th ISOPE Ocean Mining Symposium, Szczecin, Polanf, 23-27 Sep 2001, pp 132-138
  8. Doval MD, Hansell DA (2000) Organic carbon and apparent oxygen utilization in the western south and the central Indian Ocean. Mar Chem 68:249-264 https://doi.org/10.1016/S0304-4203(99)00081-X
  9. Dymond J, Collier R (1988) Biogenic particle fluxes in the equatorial Pacific: evidence for both high and low productivity during the 1982-83 El Nino. Global Biogeochem Cy 2:129-137 https://doi.org/10.1029/GB002i002p00129
  10. El-Sayed SZ, Taguchi S (1979) Phytoplankton standing crop and primary productivity in the tropical Pacific. In: Bischoff JL, Piper DZ (eds) Marine Geology and Oceanography of the Pacific Manganese Nodule Province, Pergamon, New York, pp 241-286
  11. Fiedler PC, Talley LD (2006) Hydrography of the eastern tropical Pacific: a review. Prog Oceanogr 69:143-180 https://doi.org/10.1016/j.pocean.2006.03.008
  12. Glover AG, Smith CR (2003) The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025. Environ Conserv 30(3):219-241 https://doi.org/10.1017/S0376892903000225
  13. Haake B, Ittekkot V, Rixen T, Ramaswamy V, Nair RR, Cury WB (1993) Seasonality and interannual variablty of particle fluxes to the deep Arabian Sea. Deep-Sea Res I 40:1323-1344 https://doi.org/10.1016/0967-0637(93)90114-I
  14. Hill JK, Wheeler PA (2002) Organic carbon and nitrogen in the northern California current system: Comparison of offshore, river plume and coastally upwelled waters. Prog Oceanogr 53:369-387 https://doi.org/10.1016/S0079-6611(02)00037-X
  15. Honjo S, Dymond J, Collier R, Manganini SJ (1995) Export production of particle to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Res II 42:831-870 https://doi.org/10.1016/0967-0645(95)00034-N
  16. Honjo S, Manganini S, Cole JJ (1982) Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res 29:609-625 https://doi.org/10.1016/0198-0149(82)90079-6
  17. Jiang MS, Chai F, Gugdale RC, Wilkerson FP, Peng TH, Barber RT (2003) A nitrate and silicate budget in the equatorial Pacific Ocean: a couple physical-biological model study. Deep-Sea Res II 50:2971-2996 https://doi.org/10.1016/j.dsr2.2003.07.006
  18. Karl DM, Letelier RM, Tupas LM, Dore JE, Christian JR, Winn CD (1995) Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991-92 El Nino. Nature 373:230-234 https://doi.org/10.1038/373230a0
  19. Karstensen J, Stramma L, Visbeck M (2008) Oxygen minimum zones in the eastern tropical Atlantic and Pacific ocean. Prog Oceanogr 77:331-350 https://doi.org/10.1016/j.pocean.2007.05.009
  20. Khripounoff A, Caprais JC, Crassous P, Etoubleau J (2006) Geochemical and biological recovery of the disturbed seafloor in polymetallic nodule fields of the Clipperton-Clarion Fracture Zone (CCFZ) at 5000 m depth. Limnol Oceanogr 51(5):2033-2041 https://doi.org/10.4319/lo.2006.51.5.2033
  21. Kim HJ, Hyeong K, Yoo CM, Chi SB, Khim BK, Kim D (2010) Seasonal variations of particle fluxes in the northeastern equatorial Pacific during weak El Niño and normal periods. Geosci J 14:415-422 https://doi.org/10.1007/s12303-010-0035-z
  22. Kim HJ, Hyeong K, Yoo CM, Khim BK, Kim KH, Son JW, Kug JS, Park JY, Kim D (2012) Impact of strong El Niño events (1997/98 and 2009/10) on sinking particle fluxes in the $10^{\circ}N$ thermocline ridge area of the northeastern equatorial Pacific. Deep-Sea Res I 67:111-120 https://doi.org/10.1016/j.dsr.2012.05.008
  23. Kim HJ, Kim DS, Yoo CM, Chi SB, Khim BK, Shin HR, Hyeong KS (2011) Influence of ENSO variability on sinking-particle fluxes in the northeastern equatorial Pacific. Deep-Sea Res I 58:865-874 https://doi.org/10.1016/j.dsr.2011.06.007
  24. Markussen JM (1994) Deep seabed mining and the environment: Consequences, Perceptions, and Regulations. In: Bergesen HO, Parmann G (eds) Green Global Yearbook of International Co-operation on Environment 1994, Oxford University Press, New York, pp 31-39
  25. McGee D, Marcantonio F, Lynch-Stieglitz J (2007) Deglacial changes in dust flux in the eastern equatorial Pacific. Earth Planet Sci Lett 257:215-230 https://doi.org/10.1016/j.epsl.2007.02.033
  26. Mengerink KJ, Van Dover CL, Ardron J, Baker M, Escobar-Briones E, Gjerde K, Koslow JA, Ramirez-Liodra E, Lara-Lopez A, Squires D, Sutton T, Sweetman AK, Levin LA (2014) A call for deep-ocean stewardship. Science 344:696-698 https://doi.org/10.1126/science.1251458
  27. Millero FJ (2006) Chemical oceanography (3rd ed). CRC Press, Florida, pp 266-277
  28. MLTM (2011) The report of deep sea mineral resources development (3rd level): precision environments. Korea Ocean Research and Development Institute, BSPM55650-2267-5, 69 p, Ministry of Land, Tranport and Maritime Affairs (MLTM) (in Korean)
  29. Muthunayagam AE, Das SK (1999) Indian polymetallic nodule program. In: Proceedings 3rd ISOPE Ocean Mining Symposium, Goa, India, Nov 1999, pp 1-5
  30. Nath BN, Khadge NH, Nabar S, Raghukumar C, Ingole BS, Valsangkar AB, Sharma R, Srinivas K (2012) Monitoring the sedimentary carbon in an artificially disturbed deepsea sedimentary environment. Environ Moni Assess 184:2829-2844 https://doi.org/10.1007/s10661-011-2154-z
  31. Oebius HU, Becker HJ, Rolinski S, Jankowski JA (2001) Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep-Sea Res II 48:3453-3467 https://doi.org/10.1016/S0967-0645(01)00052-2
  32. Ozturgut E, Lavelle JW, Steffin O, Swift SA (1980) Environmental investigation during manganese nodule mining tests in the North Equatorial Pacific in November 1978. Technical Memorandum ERL MESA-48, NOAA, 50 p
  33. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York, 173 p
  34. Parthiban G (2000) Increased particle fluxes at the INDEX site attributable to simulated benthic disturbance. Mar Georesour Geotech 18:223-235 https://doi.org/10.1080/10641190009353790
  35. Paulmier A, Ruiz-Pino D (2009) Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr 80:113-128 https://doi.org/10.1016/j.pocean.2008.08.001
  36. Pennington JT, Mahoney KL, Kuwahara VS, Kolber DD, Calienes R, Chavez FP (2006) Primary production in the eastern tropical Pacific: a review. Prog Oceanogr 69:285-317 https://doi.org/10.1016/j.pocean.2006.03.012
  37. Quan TM, Falkowski PG (2009) Redox control of N:P ratios in aquatic ecosystems. Geobiology 7:124-139
  38. Rodrigues N, Sharma R, Nath BN (2001) Impact of benthic disturbance on megafauna in Central Indian Basin. Deep-Sea Res II 48:3411-3426 https://doi.org/10.1016/S0967-0645(01)00049-2
  39. Romero-Centeno R, Zavala-Hidalgo J, Raga GB (2007) Midsummer gap winds and low-level circulation over the Eastern Tropical Pacific. J Clim 20. doi:10.1175/JCLI4220.1
  40. Schriever G, Blugm H, Boetius A, Borowski C, Bussau C, Thiel H (1992) DISCOL-precautionary large scale environmental impact studies for future polymetallic nodule mining from the deep sea. In: Proceedings 15th Congreso Mundial de Mineria, Madrid, Spain, 1992, pp 1311-1319
  41. Schriever G, Borowski C, DISCOL working group (2002) Seafloor macrofauna in potential mining areas: Parameters for assessment, recommended techniques and levels of replication. In: Proceedings of the ISA's workshop on the standardization of environmental data and informationdevelopment of guidelines, Kingston, Jamaica, 2002, pp 326-368
  42. Schriever G, Bussau C, Thiel H (1991) DISCOL-precautionary environmental impact studies for future manganese nodule mining and first results on meiofauna abundance. Proc Adv Mar Tech Conf 4:47-57
  43. Sharma R (2005) Deep-sea impact experiments and their future requirements. Mar Georesour Geotech 23:331-338 https://doi.org/10.1080/10641190500446698
  44. Sharma R, Nagender B, Parthiban G, Sankar SJ (2001) Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep-Sea Res II 48:3363-3380 https://doi.org/10.1016/S0967-0645(01)00046-7
  45. Son JW, Kim KH, Kim MJ, Son SK, Chi SB (2011) Distribution and inter-annual variation of nutrients (N, P, Si) and organic carbon (DOC, POC) in the Equatorial thermocline ridge, Northeast Pacific. Ocean and Polar Res 33(1):55-68 (in Korean) https://doi.org/10.4217/OPR.2011.33.1.055
  46. SPC (2013) Deep Sea Minerals. In: Baker E, Beaudoin Y (eds) Manganese nodules, a physical, biological, environmental, and technical review, Vol 1B. Secretariat of the Pacific Community (SPC)
  47. Sugimura Y, Suzuki Y (1988) A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar Chem 24:105-131 https://doi.org/10.1016/0304-4203(88)90043-6
  48. Talley LD (1991) An Okhotsk Sea-water anomaly-implications for ventilation in the North Pacific. Deep-Sea Res I 38:171-190 https://doi.org/10.1016/S0198-0149(12)80009-4
  49. Thiel H (1992) From Meseda to DISCOL: a new approach to deep-sea mining risk assessments. Mar Mining 10:369-386
  50. Thiel H, Schriever G, Ahmed A, Bluhm H, Borowski C, Vopel K (2001) The large-scale environmental impact experiment DISCOL-reflection and foresight. Deep-Sea Res II 48:3869-3882 https://doi.org/10.1016/S0967-0645(01)00071-6
  51. Trueblood DD, Ozturgut E, Pilipchuk M, Gloumov IF (1997) The ecological impacts of the joint US-Russian benthic impact experiment. In: Proceedings 2nd ISOPE Ocean Mining Symposium, Seoul, Korea, 24-26 Nov 1997, pp 139-145
  52. Van Dover CL (2011) Tighten regulations on deep-sea mining. Nature 470:31-33 https://doi.org/10.1038/470031a
  53. Wada E, Hattori A (1991) Nitrogen in the sea: Forms, Abundances and Rate processes. CRC Press, Florida, pp 71-75
  54. Yamada A, Yamazaki T, Arai R, Nakatani N (2009) Combined analysis of ecology and economy of manganese nodule mining. In: Proceedings of the 8th ISOPE Ocean Mining Symposium, Chennai, India, Sep 2009, pp 73-79
  55. Yamada H, Yamazaki T (1998) Japan's ocean test of the nodule mining system. In: Proceedings 8th International Offshore and Polar Engineer Conference, Montreal, Canada, 24-29 May 1998, pp 13-19
  56. Yamazaki T, Barnett B, Suzuki T (1997) Optical determination of the JET deep sea sediment disturbance. In: Proceedings of the International Symposium on Environmental Studies of Deep-Sea Mining, Tokyo, Japan, 20-21 Nov 1997, pp 153-168
  57. Yang EJ, Choi JK, Hyun JH (2004) Distribution and structure of heterotrophic protest communities in the northeast equatorial Pacific Ocean. Mar Biol 146:1-15 https://doi.org/10.1007/s00227-004-1412-9

Cited by

  1. Fine-scale Microbial Communities Associated with Manganese Nodules in Deep-sea Sediment of the Korea Deep Ocean Study Area in the Northeast Equatorial Pacific vol.53, pp.2, 2018, https://doi.org/10.1007/s12601-018-0032-0