• Title/Summary/Keyword: sink node

Search Result 326, Processing Time 0.024 seconds

Performance Evaluation of an Underwater Propagation Delay-Aware Medium Access Control Protocol (수중 전파 지연을 고려한 매체 접근 제어 프로토콜에 대한 성능 평가)

  • Hwang, Ho Young;Kim, Woo-Sik;Lee, Sang-Kug;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.463-469
    • /
    • 2015
  • In this paper, we propose an underwater propagation delay-aware medium access control protocol and evaluate the performance of the proposed protocol. In the proposed propagation delay-aware medium access control protocol, a sink node can restore the received RTS frames that are not piled up in a slot time. We analyze and compare the performance of the proposed underwater propagation delay-aware medium access control protocol with that of the conventional medium access control protocol in various environments.

Security Characteristics of D-MAC in Convergence Network Environment (융합망 환경에서 D-MAC의 보안 특성)

  • Hong, Jinkeun
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.323-328
    • /
    • 2014
  • D-MAC protocol is used convergence network, which is designed to connect wireless link between things. This protocol is supported to local data exchange and aggregation among neighbor nodes, and distributed control packet from sink to sensor node. In this paper, we analysis about efficiency of power consumption according to whether or not security authentication of D-MAC in convergence network. If authentication scheme is applied to MAC communication, it is related to power consumption of preamble whether or not with and without authentication process. It is reduced to energy consumption against denial attack of service, when it is applied to authentication. Future work will take the effort to deal with security authentication scheme.

Design and Implementation of an Ultrasonic Communication Modem for Underwater Sensor Networks (수중 센서네트워크를 위한 초음파 통신 모뎀 설계 및 구현)

  • Byeon, Moo-Kwang;Park, Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.437-444
    • /
    • 2009
  • Underwater sensor networks (USN) for ocean development and disaster prevention have been emerged as one of interesting research topics recently. Since a high-speed and inexpensive communication modem is a prerequisite for deployment of USN, we design and implement an underwater modem by utilizing general-purpose waterproof ultrasonic sensors in this paper. We also make experiments in indoor and outdoor environment with two modems facing each other to conduct a point-to-point communication. According to the experiments, we can achieve the data rates of 1.5 kbps in a water tank and 2 kbps in a pond. Also, the maximum communication distance between two modems is about 30 meters. Besides, we conduct a point-to-multipoint experiment imitating USN by deploying a gateway, a sink node and three sensor nodes in a water tank.

A Reliable Data Transfer Mechanism Using Directed Diffusion in Wireless Sensor Networks (무선 센서 네트워크에서 Directed Diffusion을 이용한 신뢰성 있는 데이터 전달 기법)

  • Choi Jae-Won;Lee Kwang-Hui
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.77-83
    • /
    • 2006
  • In this paper, we have pesented a reliable data transfer mechanism using Directed Diffusion in WSNs (fireless Sensor Networks). This mechanism involves selecting a route with higher reachability and transferring data along the route chosen, which is based on the end-to-end reliability calculated by the dissemination procedure of Interest packets, while each node of a sensor network maintains the only information on its neighborhood. We performed various experiments changing the link error rates and the number of nodes and discovered that this proposed mechanism improves event-to-sink data transfer reliability in WSNs. We also found that this mechanism spreads traffic load over and reduces energy consumption, which in turn prolongs network lifetime.

A Protocol for Reliable Data Transfer and Congestion Control in Wireless Sensor Networks (무선 센서 네트워크에서 신뢰성 있는 데이터 전송과 혼잡 제어를 위한 프로토콜)

  • Kim, Hyun-Tae;Joo, Young-Hoon;Ra, In-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.230-234
    • /
    • 2007
  • Generally, huge amounts of data traffic are generated by using broadcasting method to deliver sensing data to a sink node reliably so that it makes a severe network saturation problem resulting in unreliable data transfer. In order to handle this problem, a new congestion control protocol is required for supporting reliable data transfer, minimal use of energy and network resources at the same time in wireless sensor networks. In this paper, it proposes a Protocol to guarantee both a reliable transfer in data accuracy and minimum consumption of energy waste by using Hop-by-Hop sequence number and DSbACK(Delayed and Selective ACK Buffer Condition) scheme. In addition, it proves that reliability and energy efficiency are enhanced by the proposed method with the simulation results performed on TinyOS platform which is a component based built-in OS announced by UC Berkely with the performance comparison of other existing methods.

A Fault-Tolerant QoS Routing Scheme based on Interference Awareness for Wireless Sensor Networks (무선 센서 네트워크를 위한 간섭 인지 기반의 결함 허용 QoS 라우팅 기법)

  • Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2012
  • In this paper, we propose a fault-tolerant QoS routing scheme based on interference awareness for providing both high throughput and minimum end-to-end delay for wireless sensor networks. With the proposed algorithm, it is feasible to find out the optimal transmission path between sensor nodes to the sink node by using cumulative path metric where real-time delivery, high energy efficiency and less interference are considered as in path selection. Finally, simulation results show that network throughput and delay can be improved by using the proposed routing scheme.

Data Aggregation Method using Shuffled Row Major Indexing on Wireless Mesh Sensor Network (무선 메쉬 센서 네트워크에서 셔플드 로우 메이져 인덱싱 기법을 활용한 데이터 수집 방법)

  • Moon, Chang-Joo;Choi, Mi-Young;Park, Jungkeun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.984-990
    • /
    • 2016
  • In wireless mesh sensor networks (WMSNs), sensor nodes are connected in the form of a mesh topology and transfer sensor data by multi-hop routing. A data aggregation method for WMSNs is required to minimize the number of routing hops and the energy consumption of each node with limited battery power. This paper presents a shortest path data aggregation method for WMSNs. The proposed method utilizes a simple hash function based on shuffled row major indexing for addressing sensor nodes. This allows sensor data to be aggregated without complex routing tables and calculation for deciding the next hop. The proposed data aggregation algorithms work in a fractal fashion with different mesh sizes. The method repeatedly performs gathering and moves sensor data to sink nodes in higher-level clusters. The proposed method was implemented and simulations were performed to confirm the accuracy of the proposed algorithms.

An Energy Efficient MAC Protocol Considering the Funneling Effect for Wireless Sensor Networks (무선 센서 네트워크에서 퍼널링 효과를 고려한 에너지 효율적인 MAC 프로토콜의 설계)

  • Oh, Kyoung-Seok;Woo, Seok;Sung, Seok-Jin;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.41-42
    • /
    • 2007
  • DMAC is an energy efficiency and low latency protocol designed for data gathering tree structures. However, it causes the funneling effect which is many-to-one traffic patterns in tree structures, consequently, results in packet collisions, losses, and energy consumptions in low depth nodes. In this paper, we present an energy efficient MAC protocol with fairness-based scheduling to avoid the funneling effect of DMAC protocol. By using traffic information from children nodes, our protocol dynamically adjusts duty cycles of last-depth nodes to mitigate overloaded packets in the vicinity of the sink node. Therefore, we expect our protocol to save more energy and achieve better packet delivery ratio, compared to DMAC protocol.

  • PDF

An Energy Efficient Cluster-head Selection Algorithm Using Head Experience Information in Wireless Sensor Networks (무선 센서 네트워크환경에서 헤드 경험정보를 이용한 에너지 효율적인 클러스터 헤드 선정 알고리즘)

  • Kim, Hyung-Jue;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.608-614
    • /
    • 2009
  • In wireless sensor networks, there are hundreds to thousands of small battery powered devices which are called sensors. As sensors have a limited energy resources, there is a need to use it effectively. A clustering based routing protocol forms clusters by distributed algorithm. Member nodes send their data to their cluster heads then cluster heads integrate data and send to sink node. In this paper we propose an energy efficient cluster-head selection algorithm. We have used some factors(a previous cluster head experience, a existence of data to transmit and an information that neighbors have data or not) to select optimum cluster-head and eventually improve network lifetime. Our simulation results show its effectiveness in balancing energy consumption and prolonging the network lifetime compared with LEACH and HEED algorithms.

Construction of Energy-Efficient Data Aggregation Tree in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 데이터 병합 트리의 생성 방법)

  • Choi, Hyun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1057-1059
    • /
    • 2016
  • A construction method of energy-efficient data aggregation tree is proposed by considering a tradeoff between acquisition time and energy consumption in wireless sensor networks. This proposed method constructs the data aggregation tree to minimize the link cost between the connected nodes for reducing energy consumption, while minimizing the maximum distance between sensor nodes and a sink node for rapid information gathering. Simulation results show that the proposed aggregation tree can be generated with low complexity and achieves high energy efficiency compared to conventional methods.