• Title/Summary/Keyword: single-slope ADC

Search Result 12, Processing Time 0.016 seconds

Multi-Channel Analog Front-End for Auditory Nerve Signal Detection (청각신경신호 검출 장치용 다중채널 아나로그 프론트엔드)

  • Cheon, Ji-Min;Lim, Seung-Hyun;Lee, Dong-Myung;Chang, Eun-Soo;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.60-68
    • /
    • 2010
  • In case of sensorineural hearing loss, auditory perception can be activated by electrical stimulation of the nervous system via electrode implanted into the cochlea or auditory nerve. Since the tonotopic map of the human auditory nerve has not been definitively identified, the recording of auditory nerve signal with microelectrode is desirable for determining the tonotopic map. This paper proposes the multi-channel analog front-end for auditory nerve signal detection. A channel of the proposed analog front-end consists of an AC coupling circuit, a low-power 4th-order Gm-C LPF, and a single-slope ADC. The AC coupling circuit transfers only AC signal while it blocks DC signal level. Considering the bandwidth of the auditory signal, the Gm-C LPF is designed with OTAs adopting floating-gate technique. For the channel-parallel ADC structure, the single-slope ADC is used because it occupies the small silicon area. Experimental results shows that the AC coupling circuit and LPF have the bandwidth of 100 Hz - 6.95 kHz and the ADC has the effective resolution of 7.7 bits. The power consumption per a channel is $12\;{\mu}W$, the power supply is 3.0 V, and the core area is $2.6\;mm\;{\times}\;3.7\;mm$. The proposed analog front-end was fabricated in a 1-poly 4-metal $0.35-{\mu}m$ CMOS process.

A UHF-band Passive Temperature Sensor Tag Chip Fabricated in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS 공정으로 제작된 UHF 대역 수동형 온도 센서 태그 칩)

  • Pham, Duy-Dong;Hwang, Sang-Kyun;Chung, Jin-Yong;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.45-52
    • /
    • 2008
  • We investigated the design of an RF-powered, wireless temperature sensor tag chip using $0.18-{\mu}m$ CMOS technology. The transponder generates its own power supply from small incident RF signal using Schottky diodes in voltage multiplier. Ambient temperature is measured using a new low-power temperature-to-voltage converter, and an 8-bit single-slope ADC converts the measured voltage to digital data. ASK demodulator and digital control are combined to identify unique transponder (ID) sent by base station for multi-transponder applications. The measurement of the temperature sensor tag chip showed a resolution of $0.64^{\circ}C/LSB$ in the range from $20^{\circ}C$ to $100^{\circ}C$, which is suitable for environmental temperature monitoring. The chip size is $1.1{\times}0.34mm^2$, and operates at clock frequency of 100 kHz while consuming $64{\mu}W$ power. The temperature sensor required a -11 dBm RF input power, supported a conversion rate of 12.5 k-samples/sec, and a maximum error of $0.5^{\circ}C$.