• Title/Summary/Keyword: single-phase grid-connected

Search Result 154, Processing Time 0.029 seconds

Performance Evaluation of Various PLL Techniques for Single Phase Grids (단상 계통연계 운전을 위한 다양한 PLL 기법의 성능 평가)

  • Das, Partha Sarati;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.47-48
    • /
    • 2013
  • In order to evaluate the response of the grid-connected systems, Phase lock technology is widely used in power electronic devices to obtain the phase angle, amplitude, and frequency of the grid voltage because phase locked loop (PLL) algorithms are very important for grid synchronization and monitoring in the grid connected power electronic devices. This paper presents a performance evaluation in tracking grid angular frequency through single phase synchronization techniques which are an enhanced PLL (EPLL), second-order generalized integrator-PLL (SOGI-PLL), and second-order generalized integrator-frequency locked loop (SOGI-FLL). These techniques are properly analyzed through several steps to get the best technique which can track the frequency accurately and smoothly.

  • PDF

Single-Phase Seven-Level Grid-Connected Inverter Employing Digital PI Controller (디지털 PI 컨트롤을 사용한 단상 7레벨 연계형 인버터)

  • Le, Tuan-Vu;Choi, Woo-Seok;Park, Jin-Wook;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.441-442
    • /
    • 2015
  • This paper proposes a new single-phase seven-level grid-connected inverter. Operational principle with switching function are analyzed. A digital proportional-integral current-control algorithm was implemented in a TMS320F28335 DSP to keep the current injected into the grid sinusoidal. To verify the performance of the proposed inverter, PSIM simulation and experimental results are also shown in this paper.

  • PDF

A Robust Harmonic Compensation Technique using Digital Lock-in Amplifier under the Non-Sinusoidal Grid Voltage Conditions for the Single Phase Grid Connected Inverters (디지털 록인 앰프를 이용한 비정현 계통 전압 하에서 강인한 단상계통 연계 인 버터용 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.95-97
    • /
    • 2018
  • The power quality of Single Phase Grid-Connected Inverters (GCIs) has received much attention with the increasing number of Distributed Generation (DG) systems. However, the performance of single phase GCIs get degraded due to several factors such as the grid voltage harmonics, the dead time effect, and the turn ON/OFF of the switches, which causes the harmonics at the output of GCIs. Therefore, it is not easy to satisfy the harmonic standards such as IEEE 519 and P1547 without the help of harmonic compensator. To meet the harmonic standards a certain kind of harmonic controller needs to be added to the current control loop to effectively mitigate the low order harmonics. In this paper, the harmonic compensation is performed using a novel robust harmonic compensation method based on Digital Lock-in Amplifier (DLA). In the proposed technique, DLAs are used to extract the amplitude and phase information of the harmonics from the output current and compensate it by using a simple PI controller in the feedforward manner. In order to show the superior performance of the proposed harmonic compensation technique, it is compared with those of conventional harmonic compensation methods in terms of the effectiveness of harmonic elimination, complexity, and implementation. The validity of the proposed harmonic compensation techniques for the single phase GCIs is verified through the experimental results with a 5kW single phase GCI. Index Terms -Single Phase Grid Connected Inverter (SPGCI), Harmonic Compensation Method, Total Harmonic Distortion (THD) and Harmonic Standard.

  • PDF

DC link Ripple Voltage Compensation of a Single-phase Grid-Connected PV System (단상 계통연계형 태양광 발전 시스템의 직류링크 맥동전압 보상)

  • Lee, Jae-Geun;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.377-387
    • /
    • 2012
  • A single-phase grid-connected PV system is known as suitable for housing of less than 3 kW. The DC link voltage in a single-phase PV system has necessarily twice component of fundamental wave. It makes high THD in the grid current. According to the problem, power quality is lower. Many engineers have studied about this problem. The most simple method is to use low pass filter on DC link voltage control. However it is affected by DC link voltage control bandwidth. If cutoff frequency is reduced to increase the performance of low pass filter, it also lowers DC link voltage control bandwidth. Second method is using band stop filter, it works good on steady state but not good on transient state. This paper proposes the new method for removing ripple voltage to get an exact current reference. It improves the responses on steady state and transient state. The performance was verified through computer simulation using MATLAB and actual experiments.

Microcontroller-Based Improved Predictive Current Controlled VSI for Single-Phase Grid-Connected Systems

  • Atia, Yousry;Salem, Mahmoud
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1016-1023
    • /
    • 2013
  • Predictive current control offers the potential for achieving more precise current control with a minimum of distortion and harmonic noise. However, the predictive method is difficult to implement and has a greater computational burden. This paper introduces a theoretical analysis and experimental verification for an improved predictive current control technique applied to single phase grid connected voltage source inverters (VSI). The proposed technique has simple calculations. An ATmega1280 microcontroller board is used to implement the proposed technique for a simpler and cheaper control system. To enhance the current performance and to obtain a minimum of current THD, an improved tri-level PWM switching strategy is proposed. The proposed switching strategy uses six operation modes instead of four as in the traditional strategy. Simulation results are presented to demonstrate the system performance with the improved switching strategy and its effect on current performance. The presented experimental results verify that the proposed technique can be implemented using fixed point 8-bit microcontroller to obtain excellent results.

Control of Single-Phase Grid-Connected Photovoltaic System using a Z-Source Inverter (Z-소스 인버터를 사용한 단상 계통 연계형 태양광 시스템 제어)

  • Chun, Tae-Won;Tran, Quang-Vinh;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.369-375
    • /
    • 2008
  • In this paper, a method for controlling the a single-phase grid-connected photovoltaic(PV) system using Z-source inverter (ZSI) is proposed. The operating region of grid-connected ZSI system with a variation of PV output voltage are analyzed by considering the voltage stress across switching devices. The switching patterns for controlling effectively the shoot-through time while reducing the switching loss are suggested. Both the simulation studies and experimental results with 32-bit DSP are carried out to verify the performances of proposed system.

A Second-order Harmonic Current Reduction with a Fast Dynamic Response for a Two-stage Single-phase Grid-connected Inverter

  • Jung, Hong-Ju;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1988-1994
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a DC/DC converter and a DC/AC converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains second-order frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new second-order harmonic current reduction scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.

Dual-Loop Power Control for Single-Phase Grid-Connected Converters with LCL Filter

  • Peng, Shuangjian;Luo, An;Chen, Yandong;Lv, Zhipeng
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.456-463
    • /
    • 2011
  • Grid-connected converters have widely adopted LCL filters to acquire high harmonic suppression. However, the LCL filter increases the system order so that the design of the system stability would be complicated. Recently, sole-loop control strategies have been used for grid-connected converters with L or LC filters. But if the sole-loop control is directly transplanted to grid-connected converters with LCL filters, the systems may be unstable. This paper presents a novel dual-loop power control strategy composed of a power outer loop and a current inner loop. The outer loop regulates the grid-connected power. The inner loop improves the system stability margin and suppresses the resonant peak caused by the LCL filter. To obtain the control variables, a single-phase current detection is proposed based on PQ theory. The system transfer function is derived in detail and the influence of control gains on the system stability is analyzed with the root locus. Simulation and experimental results demonstrate the feasibility of the proposed control.

Experiment of Single-phase Grid Connected Battery Charger (5kW급 계통연계형 단상 배터리 충전기의 구현 및 실험)

  • An, Hyun-Sung;Lee, Wujong;Mun, Byung-Ho;Park, Il-Kyu;Jung, Seon-Yong;Kim, Youngroc;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2013
  • This paper explains control methods of single-phase grid connected battery charger. Charging mode is control by Constant Current - Constant Voltage method and discharging mode is controlled by active-reactive power control method. Current control method is based on the synchronous reference frame(SRF) PI controller, and the second harmonic of battery current is compensated by an added L-C resonant circuit. Feasibility of the proposed control methods is verified through experiment with a prototype of 5kW single-phase grid connected battery charger.

Dead time Compensation of Single-phase Grid-connected Inverter Using SOGI (SOGI를 이용한 단상 계통연계형 인버터의 데드타임 보상)

  • Seong, Ui-Seok;Lee, Jae-Suk;Hwang, Seon-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2017
  • This study proposes a compensation method for the dead-time effects on a single-phase grid-connected inverter. Dead time should be considered in the pulse-width modulation gating signals to prevent the simultaneous conduction of switching devices, considering that a switching device has a finite switching time. Consequently, the output current of the grid-connected inverter contains odd-numbered harmonics because of the dead time and the nonlinear characteristics of the switching devices. The effects of dead time on output voltage and current are analyzed in this study. A new compensation algorithm based on second-order generalized integrator is also proposed to reduce the dead-time effect. Simulation and experimental results validate the effectiveness of the proposed compensation algorithm.