• Title/Summary/Keyword: single-panel model

Search Result 68, Processing Time 0.028 seconds

Analytical Methods for the Extraction of PV panel Single-Diode model parameters from I-V Characteristic (I-V 특성곡선을 통한 태양전지 패널의 모델 파라미터 추출 방법)

  • Choi, Sung-Won;Ryu, Ji-Hyung;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.847-851
    • /
    • 2011
  • Photovoltaic System is increasing install capacity based on environmental-friendly characteristics. It have been actively studied to improve the efficiency. In order to design highly efficient system, it is important to understand the output characteristics of solar panels. The single diode model can represent the physical characteristics of solar panel. But it needs complex process such as mutli-step measurement and numerical analysis to get the exact parameters. In this paper, The method for extracting characteristic parameters of the single diode model based on the I-V characteristic curves in the panel manufacturer's data-sheet is presented. To verify the proposed method, solar cell model constructed in simulink. Simulink model output compared with output graph in datasheet.

A numerical study on vibration behavior of fiber-reinforced composite panels in thermal environments

  • Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.691-699
    • /
    • 2022
  • This paper is devoted to the presentation of a numerical study on vibration behavior of composite panels reinforced by glass fibres and carbon nanotubes (CNTs) subjected to thermal environments. The effect of temperature variation has been included as thermal load acting on in-plane direction of the panel. To model the composite material, a micromechanical model which contains random dispersion of nanotubes and single-direction fibers has been selected. The geometry of the panel has been considered to have a single curveture along its width. Based on the above assumptions, the governing equations have been derived by using thin shell theory capturing the panel curveture and also nonlinear deflections. Finally, the panel dependence on various factors such as the curveture, nanotube amount, fiber volume, fiber direction and temperature variation has been researched.

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties

  • Kar, Vishesh R.;Panda, Subrata K.;Mahapatra, Trupti R.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.205-221
    • /
    • 2016
  • In this article, the buckling responses of functionally graded curved (spherical, cylindrical, hyperbolic and elliptical) shell panels under elevated temperature load are investigated numerically using finite element steps. The effective material properties of the functionally graded shell panel are evaluated using Voigt's micromechanical model through the power-law distribution with and without temperature dependent properties. The mathematical model is developed using the higher-order shear deformation theory in conjunction with Green-Lagrange type nonlinear strain to consider large geometrical distortion under thermal load. The efficacy of the proposed model has been checked and the effects of various geometrical and material parameters on the buckling load are analysed in details.

A spatial heterogeneity mixed model with skew-elliptical distributions

  • Farzammehr, Mohadeseh Alsadat;McLachlan, Geoffrey J.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.373-391
    • /
    • 2022
  • The distribution of observations in most econometric studies with spatial heterogeneity is skewed. Usually, a single transformation of the data is used to approximate normality and to model the transformed data with a normal assumption. This assumption is however not always appropriate due to the fact that panel data often exhibit non-normal characteristics. In this work, the normality assumption is relaxed in spatial mixed models, allowing for spatial heterogeneity. An inference procedure based on Bayesian mixed modeling is carried out with a multivariate skew-elliptical distribution, which includes the skew-t, skew-normal, student-t, and normal distributions as special cases. The methodology is illustrated through a simulation study and according to the empirical literature, we fit our models to non-life insurance consumption observed between 1998 and 2002 across a spatial panel of 103 Italian provinces in order to determine its determinants. Analyzing the posterior distribution of some parameters and comparing various model comparison criteria indicate the proposed model to be superior to conventional ones.

Experimental and analytical evaluation of a low-cost seismic retrofitting method for masonry-infilled non-ductile RC frames

  • Srechai, Jarun;Leelataviwat, Sutat;Wongkaew, Arnon;Lukkunaprasit, Panitan
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.699-712
    • /
    • 2017
  • This study evaluates the effectiveness of a newly developed retrofitting scheme for masonry-infilled non-ductile RC frames experimentally and by numerical simulation. The technique focuses on modifying the load path and yield mechanism of the infilled frame to enhance the ductility. A vertical gap between the column and the infill panel was strategically introduced so that no shear force is directly transferred to the column. Steel brackets and small vertical steel members were then provided to transfer the interactive forces between the RC frame and the masonry panel. Wire meshes and high-strength mortar were provided in areas with high stress concentration and in the panel to further reduce damage. Cyclic load tests on a large-scale specimen of a single-bay, single-story, masonry-infilled RC frame were carried out. Based on those tests, the retrofitting scheme provided significant improvement, especially in terms of ductility enhancement. All retrofitted specimens clearly exhibited much better performances than those stipulated in building standards for masonry-infilled structures. A macro-scale computer model based on a diagonal-strut concept was also developed for predicting the global behavior of the retrofitted masonry-infilled frames. This proposed model was effectively used to evaluate the global responses of the test specimens with acceptable accuracy, especially in terms of strength, stiffness and damage condition.

Determinants of Foreign Direct Investment: Evidence from Provincial Level Data in Indonesia

  • MEIVITAWANLI, Bryna
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.53-60
    • /
    • 2021
  • Foreign direct investment (FDI) is especially important for developing countries. This study investigates the determinants of FDI in the case of Indonesia. Most empirical researches in this field used time series data of a single country or panel data of several countries. Although panel data analysis is more comprehensive, however results taken from cross-country analysis cannot be directly applied to any specific country in the dataset and therefore lacks practicality. In this research, panel data analysis of a single country is performed to overcome the aforementioned shortcomings. Five determinants of FDI are tested using panel data of 33 Indonesian provinces over 10-year period of time. Two methodologies are adopted, random/fixed effects model and Granger Causality. The results show that only market size significantly affects FDI when tested using both methodologies. Human capital and financial market development show significant result in one of the two methodologies. While, economic growth and infrastructure did not show any significant results at all. This research stresses the importance of comprehensive single country analysis since only one out of five commonly discussed determinants is applicable in the case of Indonesia. Governments should therefore carefully reconsider the use of cross-country analysis as a basis of their policy formulations.

Transmitted Noise Reduction Performance of Piezoelectric Single Panel through Piezo-damping (압전감쇠를 통한 압전단일패널의 전달 소음저감성능)

  • 이중근;김재환;김기선;이형식
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • The possibility of a noise reduction of piezoelectric single Panels is experimentally studied. Piezoelectric single panel is basically a plate structure on which piezoelectric patch with shunt circuit is mounted. The use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. Piezo-damping is implemented by using a newly proposed tuning method. This method is based on electrical impedance model and maximizing the dissipated energy at the shunt circuit. By measuring the electrical impedance at the piezoelectric patch bonded on a structure, an equivalent electrical model is constructed near the system resonance frequency. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of single Panel is tested on an acoustic tunnel. The tunnel is a tube with a square cross section and a loud speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across Panels is measured. By enabling the piezoelectric shunt damping noise reduction is achieved at the resonance frequencies as well. Piezoelectric single panel with piezoelectric shunt damping is a promising technology for noise reduction in a broadband frequency.

  • PDF

Circuit Modeling and Analysis of Touch Screen Panel (터치스크린 패널의 회로 모델링 및 분석)

  • Byun, Kisik;Min, Byung-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.47-52
    • /
    • 2014
  • A simple RC circuit model of large-scale touch screen panels is developed and the frequency range of the RC model is analyzed. 2D EM simulation results of a single touch cell are cascaded for a 23 inch touch panel using a circuit simulator, and the shortest and longest channels of the full panel are modeled with a 5-element RC circuit. The 5-element RC circuit can model the touch screen panel upto 130 kHz with the channel phase error of $10^{\circ}$. 7-element RC circuit model is also proposed and the frequency range for the channel phase error of $10^{\circ}$ is extended to 200 kHz.

Numerical Analysis of Inelastic Lateral Torsional Buckling Strength of HSB800 Steel Plate Girders with Doubly Symmetric Section (이축대칭단면 HSB800 강재 플레이트거더의 비탄성 횡비틂좌굴강도의 해석적 평가)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Hwang, Min O
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • In this paper, lateral-torsional buckling(LTB) strength of HSB800 steel plate girder under uniform bending moment was estimated by the nonlinear analysis. Doubly symmetric sections with slender, noncompact and compact webs were considered and the LTB strength in the inelastic range was estimated by taking initial imperfection and residual stress into account. For the numerical analysis, single-panel model and three-panel model were considered and analysis of SM490 steel plate girder was performed to judge the validity of the constructed models by comparing the results with AASHTO, AISC, Eurocode and KHBDC(LSD) codes. By using the same models, LTB strength of HSB800 girder was evaluated and it was acknowledged that the current codes can be applied to HSB800 girders with doubly symmetric section in the inelastic LTB range.