• 제목/요약/키워드: single-objective optimization

검색결과 218건 처리시간 0.036초

Deep Learning-Based Inverse Design for Engineering Systems: A Study on Supervised and Unsupervised Learning Models

  • Seong-Sin Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.127-135
    • /
    • 2024
  • Recent studies have shown that inverse design using deep learning has the potential to rapidly generate the optimal design that satisfies the target performance without the need for iterative optimization processes. Unlike traditional methods, deep learning allows the network to rapidly generate a large number of solution candidates for the same objective after a single training, and enables the generation of diverse designs tailored to the objectives of inverse design. These inverse design techniques are expected to significantly enhance the efficiency and innovation of design processes in various fields such as aerospace, biology, medical, and engineering. We analyzes inverse design models that are mainly utilized in the nano and chemical fields, and proposes inverse design models based on supervised and unsupervised learning that can be applied to the engineering system. It is expected to present the possibility of effectively applying inverse design methodologies to the design optimization problem in the field of engineering according to each specific objective.

Optimal Policy for a Regional Water Distribution System

  • Ryang, Yong-Joon
    • 한국국방경영분석학회지
    • /
    • 제11권1호
    • /
    • pp.87-110
    • /
    • 1985
  • This paper presents optimum policy of water supply distribution of the Osaka Prefecural Waterworks System located in the midwest of Japanese Islands. Owing to the ever increasing demand for water, the Osaka Prefectural Government endeavors to expand potable and industrial water distribution system to satisfy the growing water demand of the constituents under its jurisdiction. In this regard, the paper discusses a problem of establishing an efficient and effective water distribution system. The criteria to be considered are stability of water level at the reservoirs, stability of flow in the network, and the water treatment and distribution cost. These objective functions may be combined to form a multiple objective optimization problem or may be used independently and formulated into single objective optimization problems.

  • PDF

사출 성형품의 휨과 웰드라인을 최적화하기 위한 자동 금형설계 방법 (Automatic Mold Design Methodology to Optimize Warpage and Weld Line in Injection Molded Parts)

  • 박종천
    • 소성∙가공
    • /
    • 제9권5호
    • /
    • pp.512-525
    • /
    • 2000
  • Designers are frequently faced with multiple quality issues in injection molded parts. These issues are usually In conflict with each other, and thus tradeoff needs to be made to reach a final compromised solutions. The objective of this study is to develop an automated injection molding design methodology, whereby part defects such as warpage and weld line are optimized. The features of the proposed methodology are as follows: first, Utility Function approach is applied to transform the original multiple objective problem into single objective problem. Second is an implementation of a direct search-based Injection molding optimization procedure with automated consideration of process variation. The Space Reduction Method based on Taguchi's DOE(Design Of Experiment) is used as a general optimization tool in this study. The computational experimental verification of the methodology was partially carried out for a can model of Cavallero Plastics Incorporation, U. S. A. Applied to production, this study will be of immense value to companies in reducing the product development time and enhancing the product quality.

  • PDF

복합재료 평판과 압전필름 작동기를 이용한 저음용 평판 스피커 설계 (Design of Loudspeaker using Composite Plate and Piezofilm Actuator)

  • 황준석;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.124-129
    • /
    • 1999
  • In this study, a design method for the flat sound radiator is developed to make new sound radiator system, whose shape is much thinner than that of conventional loudspeaker. Piezofilm (PVDF) is used as actuators of flat sound radiator. To avoid the distortion of sound radiated from flat sound radiator, the frequency response of radiated sound to be flat is taken as the design objective. The electrode pattern and orientation angle of piezofilm actuator is optimized to satisfy the design objective. The formulation is based on the coupled finite element and boundary element method. Genetic algorithm is used in the optimization process, which is useful in the optimization of discrete design variables. Frequency response with optimized piezofilm actuator is made flat enough to satify the design objective. For the enhancement of sound power, double-layered piezofilm actuators are also considered. The sound power with double-layered actuator becomes larger than that with single-layered actuator as expected.

  • PDF

인공생명최적화알고리듬에 의한 저널베어링의 파레토 최적화 (Pareto optimum design of journal bearings by artificial life algorithm)

  • 송진대;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.869-874
    • /
    • 2005
  • This paper proposes the Pareto artificial life algorithm for a multi-objective function optimization problem. The artificial life algorithm for a single objective function optimization problem is improved through incorporating the new method to estimate the fitness value fur a solution and the Pareto list to memorize and to improve the Pareto optimal set. The proposed algorithm is applied to the optimum design of a Journal bearing which has two objective functions. The Pareto front and the optimal solution set for the application are reported to present the possible solutions to a decision maker or a designer.

  • PDF

다목적 최적화 기반 구조물 수명관리의 효율적 의사결정을 위한 목적감소 기법의 적용 (Objective Reduction Approach for Efficient Decision Making of Multi-Objective Optimum Service Life Management)

  • 김선용
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.254-260
    • /
    • 2017
  • 사회기반시설물은 적절한 수명관리를 통해 경제적이고 안전한 구조성능을 유지한다. 일반적으로 최적화 기법을 적용하여, 유지보수의 시점과 방법을 결정하게 되는데, 이 적용에 있어서 단일 목적함수만을 고려하기 보다는 다수의 목적함수를 동시에 고려하는 것이 보다 합리적인 의사결정을 유도한다. 최근까지 수명관리에 관련한 연구는 생애주기 비용 최소화 또는 구조성능 최대화와 관련한 목적함수를 적용하여 왔으며, 새로운 확률론적 구조성능 및 안전성 평가 기법을 이용하여 다양한 형태의 목적함수를 개발/적용하고 있다. 이러한 다수의 목적함수를 동시에 고려하는 다목적 최적화 기반 사회기반시설물 수명관리가 최근 국내외에서 많이 적용되고 있다. 하지만, 수명관리 최적화를 위한 목적함수의 개수가 증가함에 따라 신뢰성있는 결과를 얻기 위해서는 많은 계산시간이 소요되며, 특히 확률론적 계산을 위한 시뮬레이션 기법이 적용되는 목적함수의 경우 계산시간은 더욱 증가하게 된다. 또한, 목적함수의 개수 증가에 따라 계산결과의 차수가 증가하기 때문에 이를 시각화하고 나아가 의사결정에 어려움이 발생한다. 따라서, 본 논문에서는 다목적 최적화 문제의 계산된 결과를 바탕으로 한 의사결정의 효율성 향상을 위해 최소 필수 목적함수를 구별하는 목적감소 기법을 적용하여 콘크리트 교량 상판의 수명관리에 대한 연구를 수행하였으며, 최초 4개의 목적함수가 2개까지 감소되는 결과를 보여준다.

Resource Allocation in Multi-User MIMO-OFDM Systems with Double-objective Optimization

  • Chen, Yuqing;Li, Xiaoyan;Sun, Xixia;Su, Pan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2063-2081
    • /
    • 2018
  • A resource allocation algorithm is proposed in this paper to simultaneously minimize the total system power consumption and maximize the system throughput for the downlink of multi-user multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems. With the Lagrange dual decomposition method, we transform the original problem to its convex dual problem and prove that the duality gap between the two problems is zero, which means the optimal solution of the original problem can be obtained by solving its dual problem. Then, we use convex optimization method to solve the dual problem and utilize bisection method to obtain the optimal dual variable. The numerical results show that the proposed algorithm is superior to traditional single-objective optimization method in both the system throughput and the system energy consumption.

Optimal Design of Low-Speed Secondary-Sheet Single-Sided Linear Induction Motor

  • Shiri, Abbas;Shoulaie, Abbas
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.581-587
    • /
    • 2013
  • Among different linear motors, single-sided linear induction motors have been widely used in industry due to their simplicity and low construction cost. However, these types of motors suffer from low efficiency and power factor. In this paper, an effective procedure is proposed to design single-sided linear induction motors. The designed motor is simulated in MATLAB software in order to investigate the effect of design parameters on the performance of the machine. Regarding the obtained results, the Genetic Algorithm is employed to optimize the design considering product of efficiency and power factor as objective function. The results show significant improvement of the performance. Finally, experimental results and 2D finite element method is used to validate the model parameters and the optimization results.

A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function

  • Chen, Ze-peng;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.825-835
    • /
    • 2017
  • Significant improvements to methodologies on structural damage detection (SDD) have emerged in recent years. However, many methods are related to inversion computation which is prone to be ill-posed or ill-conditioning, leading to low-computing efficiency or inaccurate results. To explore a more accurate solution with satisfactory efficiency, a PSO-INM algorithm, combining particle swarm optimization (PSO) algorithm and an improved Nelder-Mead method (INM), is proposed to solve multi-sample objective function defined based on Bayesian inference in this study. The PSO-based algorithm, as a heuristic algorithm, is reliable to explore solution to SDD problem converted into a constrained optimization problem in mathematics. And the multi-sample objective function provides a stable pattern under different level of noise. Advantages of multi-sample objective function and its superior over traditional objective function are studied. Numerical simulation results of a two-storey frame structure show that the proposed method is sensitive to multi-damage cases. For further confirming accuracy of the proposed method, the ASCE 4-storey benchmark frame structure subjected to single and multiple damage cases is employed. Different kinds of modal identification methods are utilized to extract structural modal data from noise-contaminating acceleration responses. The illustrated results show that the proposed method is efficient to exact locations and extents of induced damages in structures.

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권6호
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.