• 제목/요약/키워드: single-molecule techniques

검색결과 38건 처리시간 0.022초

Synthesis and Crystal Structure of Zinc Iodide in the Sodalite Cavities of Zeolite A (LTA)

  • Kim, Seok-Han;Park, Man;Son, Young-Ja;Lee, Hyung-Joo;Jeong, Gyo-Cheol;Bae, Myung-Nam;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.567-573
    • /
    • 2007
  • The crystal structure of ZnI2 molecule synthesized in zeolite A (LTA) has been studied by single-crystal X-ray diffraction techniques. A single crystal of |Zn6|[Si12Al12O48]-LTA, synthesized by the dynamic ion-exchange of |Na12|[Si12Al12O48]-LTA with aqueous 0.05 M Zn(NO3)2 and washed with deionized water, was placed in a stream of flowing 0.05 M KI in CH3OH at 294 K for four days. The resulting crystal structure of the product (|K6Zn3(KI)3(ZnI2)0.5|[Si12Al12O48]-LTA, a = 12.1690(10) A) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm3m. It was refined with all measured reflections to the final error index R1 = 0.078 for 431 reflections which Fo > 4σ (Fo). At four crystallographically distinct positions, 3.5 Zn2+ and nine K+ ions per unit cell are found: three Zn2+ and five K+ ions lie on the 3-fold axes opposite 6-rings in the large cavity, two K+ ions are off the plane of the 8-rings, two K+ ions are recessed deeply off the plane of the 8-rings, and the remaining a half Zn2+ ion lie on the 3-fold axes opposite 6-rings in the sodalite cavity. A half Zn2+ ion and an I- ion per unit cell are found in the sodalite units, indicating the formation of a ZnI2 molecule in 50% of the sodalite cavities. Each ZnI2 (Zn-I = 3.35(5) A) is held in place by the coordination of its one Zn2+ ion to the zeolite framework oxygens and by the coordination of its two I- ions to K+ ions through 6-rings (I-K = 3.33(8) A). Three additional I- ions per unit cell are found opposite a 4-ring in the large cavity and form a K3I2+ and two K2ZnI3+ ionic clusters, respectively.

Interaction at the nanoscale of fundamental biological molecules with minerals

  • Valdre, Giovanni;Moro, Daniele;Ulian, Gianfranco
    • Advances in nano research
    • /
    • 제1권3호
    • /
    • pp.133-151
    • /
    • 2013
  • The availability of advanced nanotechnological methodologies (experimental and theoretical) has widened the investigation of biological/organic matter in interaction with substrates. Minerals are good candidates as substrates because they may present a wide variety of physico-chemical properties and surface nanostructures that can be used to actively condense and manipulate the biomolecules. Scanning Probe Microscopy (SPM) is one of the best suited techniques used to investigate at a single molecule level the surface interactions. In addition, the recent availability of high performance computing has increased the possibility to study quantum mechanically the interaction phenomena extending the number of atoms involved in the simulation. In the present paper, firstly we will briefly introduce new SPM technological developments and applications to investigate mineral surfaces and mineral-biomolecule interaction, then we will present results on the specific RNA-mineral interaction and recent basics and applicative achievements in the field of the interactions between other fundamental biological molecules and mineral surfaces from both an experimental and theoretical point of view.

The Crystal and Molecular Structure of Thiamphenicol

  • Shin, Whan-chul;Kim, Sang-soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제4권2호
    • /
    • pp.79-83
    • /
    • 1983
  • The structure of thiamphenicol, one of the congeners of chloramphenicol which is a well-known antibiotic, has been determined by single crystal x-ray diffraction techniques. The crystal structure was determined using diffractometer data obtained by the $2{\theta}:{\omega}$ scan technique with $MoK{\alpha}$ radiation from a crystal having space group symmetry $P2_{1}2_{1}2_{1}$, and unit cell parameters a = 5.779, b = 15.292 and c = 17.322 ${\AA}$ . The structure was solved by direct methods and refined by least squares to an R = 0.070 for the 2116 reflections. The overall V-shaped conformation of thiamphenicol revealed in this study is consistent with those from the crystallographic studies and the proposed models from the theoretical and nmr studies of chloramphenicol. However there is no intramolecular hydrogen bond and the propanediol moiety is fully extended in the thiamphenicol molecule, while the crystal structures of chloramphenicol show the existence of the hydrogen bond between the two hydroxyl groups of the propanediol moiety forming an acyclic ring. All of the thiamphenicol molecules in the crystal are linked by a threedimensional hydrogen bonding network.

Crystal Structure of a Cyclopropane Sorption Complex of Dehydrated Fully $Ca^{2+}$-Exchanged Zeolite X

  • 최은영;김양;송성환
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권7호
    • /
    • pp.791-795
    • /
    • 1999
  • The crystal structure of a cyclopropane sorption complex of dehydrated fully Ca (2+) -exchanged zeolite X, Ca46Si100Al92O384· 30C3H6 (a = 24.988(4) Å), has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21(1)℃. The crystal was prepared by ion exchange in a flowing stream of 0.05M aqueous Ca(NO3)2 for four days, followed by dehydration at 460℃ and 2×10 (-6) Torr for two days, and exposure to 100 Torr of cyclopropane gas at 21(1)℃. The structure was determined in this atmosphere and refined to the final error indices R1 = 0.068 and R2 = 0.082, with 373 reflections for which I > 3σ (I). In this structure, Ca 2+ ions are located at two crystallographic sites. Sixteen Ca 2+ ions fill the octahedral sites I at the centers of the hexagonal prisms (Ca-O = 2.412(9)Å). The remaining 30 Ca 2+ ions are at sites Ⅱ; each extends 0.46Å into the supercage (an increase of 0.16Å upon C3H6 sorption) where it coordinates to three trigonally arranged framework oxygens at 2.311(8)Å. Each of the 30 cyclopropane molecules was found to complex to Ca 2+ ions at site II by the induced dipole interaction (Ca-C = 2.99(4)Å). All carbon atoms in each cyclopropane molecule are equivalent and equidistant from Ca 2+ ions at site II with which they are associated.

Crystal Structures of Bromine Sorption Complexes of $Ca^{2+}$-Exchanged Zeolite A

  • 장세복;송성환;김양
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권12호
    • /
    • pp.1163-1167
    • /
    • 1995
  • The structures of dehydrated Ca4Na4-A (a=12.243(1) Å) and of its bromine sorption complex (a=12.214(1) Å) have been determined by single crystal x-ray diffraction techniques in the cubic space groupPm&bar{3}m at 21(1) ℃. Both crystals were dehydrated at 360 ℃ and 2 X 10-3 Torr for 2 days and one crystal was treated with 180 Torr of bromine vapor at 24 ℃ for 1 h. The structures were refined to final error indices, R1=0.066 and R2=0.078 with 192 reflections and R1=0.109 and R2=0.093 with 100 reflections, respectively, for which I>3σ(I). In these structures, four Ca2+ and four Na+ ions are located on two different threefold axes associated with 6-ring oxygens, respectively. In Ca4Na4-A·6Br2, four Ca2+ ions are recessed 0.28(1) Å into the large cavity and four Na+ ions extend 0.63(1) Å into the sodalite unit. A total of six dibromine molecules are sorbed per unit cell. Each Br2 molecule approaches a framework oxide ion axially with O(1)-Br(1)=3.27(2) Å Br(1)-Br(2)=2.66(6) Å and O(1)-Br(1)-Br(2)=172(1)°, indicating a charge-transfer interaction.

Single-crystal Structure of Partially Dehydrated Partially Mg2+-exchanged Zeolite Y (FAU), |Mg30.5Na14(H2O)2.5|[Si117Al75O384]-FAU

  • Kim, Hu-Sik;Ko, Seong-Oon;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3696-3701
    • /
    • 2011
  • The single-crystal structure of partially dehydrated partially $Mg^{2+}$-exchanged zeolite Y, ${\mid}Mg{30.5}Na_{14}(H_2O)_{2.5}{\mid}$ [$Si_{117}Al_{75}O_{384}$]-FAU per unit cell, ${\alpha}$ = 25.5060(1) ${\AA}$, dehydrated at 723 K and $1{\times}10^{-4}$ Pa, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd$\bar{3}$ m at 100(1) K. The structure was refined using all intensities to the final error indices (using only the 561 reflections with $F_{\circ}$ > $4{\sigma}(F_{\circ})$) $R_1$ = 0.0377 (Based on F) and $R_2$ = 0.1032 (Based on $F^2$). About 30.5 $Mg^{2+}$ ions per unit cell are found at four different crystallographic sites. The 14 $Mg^{2+}$ ions occupy at site I at the center of double 6-ring (Mg-O = 2.231(3) ${\AA}$, O-Mg-O = $89.15(11)^{\circ}$ and $90.85(11)^{\circ}$). Four $Mg^{2+}$ ions are found at site I' in the sodalite cavity; the $Mg^{2+}$ ions are recessed 1.22 ${\AA}$ into the sodalite cavity from their 3-oxygen plane (Mg-O = 2.20(3) ${\AA}$ and O-Mg-O = $92.3(14)^{\circ}$). Site II' positions (opposite single 6-rings in the sodalite cage) are occupied by 2.5 $Mg^{2+}$ ions, each coordinated to an $H_2O$ molecule (Mg-O = 2.187(20) ${\AA}$ and O-Mg-O = $114.2(16)^{\circ}$). The 10 $Mg^{2+}$ ions are nearly three-quarters filled at site II in the supercage, being recessed 0.12 ${\AA}$ into the supercage (Mg-O = 2.123(4) A and O-Mg-O = $119.70(19)^{\circ}$). About 14 $Na^+$ ions per unit cell are found at one crystallographic site; the $Na^+$ ions are located at site II in the supercage (Na-O = 2.234(7) ${\AA}$ and O-Mg-O = $110.5(4)^{\circ}$).

Development of Novel Pyrrolidine Organocatalyst

  • 임설희;강성호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.198-198
    • /
    • 2011
  • Organocatalysis is a relatively new and popular area within the field of chiral molecule synthesis. It is one of the main branches of enantioselective synthesis with enzymatic and organometallic catalysis. In recent years, immense high quality studies on catalysis by chiral secondary amines were reported. These progresses instantly led to different organocatalytic activation concepts, so thousands of researchers from academia and the chemical industry are currently involved in this field and new ideas, new approaches, and creative thinking have been rapidly emerged. Organocatalysts, some of which are natural products, appear to solve the problems of metal catalysts. Compared to metal-based catalysis, they have many advantages including savings in cost, time, and energy, easier experimental procedure, and reduction of chemical waste. These benefits originate from the following factors. First, organocatalysts are generally stable in oxygen and water in the atmosphere, there is no need for special equipments or experimental techniques to operate under anhydrous or anaerobic conditions. Second, organic reagents are naturally available from biological materials as single enantiomers that they are easy and cheap to prepare which makes them suitable for small-scale to industrial-scale reactions. Third, in terms of safety related catalysis, small organic molecules are non-toxic and environmentally friendly. Therefore, the purpose of this research is to develop novel synthetic methods and design for various organocatalyst. Furthermore, it is expected that these organocatalysts can be applied to a variety of asymmetric reactions and study the transition state of these reactions using a metal sulface. Here, we report the synthesis of unprecedented organocatalysts, proline and pyrrolidine derivatives with quaternary carbon center.

  • PDF

Crystal Structures of Dehydrated $Ag^{+}\;and\;Ca^{2+}$ Exchanged Zeolite A, $Ag_{3.3}Ca_{4.35}$-A and of Its Ethylene Sorption Complex

  • Se Bok Jang;Jong Yul Park;Yunghee Oh Kim;Yang Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권1호
    • /
    • pp.82-86
    • /
    • 1993
  • Two crystal structures of dehydrated $Ag_{3.3}Ca_{4.35}-A ({\alpha} = 12.256(2){\AA})$ and of its ethylene sorption complex (${\alpha} = 12.259(2){\AA}$) have been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(l)$^{\circ}$C. Both crystals were dehydrated at 360$^{\circ}$C and $2{\times}10^{-6}$ Torr for 2 days and one crystal was treated with 200 Torr of ethylene at 24(2)$^{\circ}$C. The structures were refined to final error indices, $R_1$=O.065 and $R_2$ = 0.088 with 202 reflections and $R_1$=0.049 and $R_2$ = 0.044 with 259 reflections, respectively, for which I>3${\sigma}$(I). In these structures, all Ag$^+$ and Ca$^{2+}$ ions are located on two and three different threefold axes associated with 6-ring oxygens, respectively. In $Ag_{3.3}Ca_{4.35}-A{\cdot}6.65\;C_2H_4,\;3.3\;Ag^+\;and\;3.35\;Ca^{2+}$ ions are recessed 1.09 ${\AA}$ and 0.21 ${\AA}$, respectively, into the large cavity from the (111) plane at O(3). Each Ag$^+$ and Ca$^{2+}$ ion in the large cavity forms a complex with one $C_2H_4$$^{2+}$ ions and ethylene molecules are longer than those between Ag$^+$ ions and ethylene molecules.

Silver Ions in Zeolite A are Reduced by H$_2$ only at High Temperatures when 8-Rings are Blocked by Cs$^+$. Crystal Structures of Dehydrated $Ag_9Cs_3$-A Treated with H$_2$ at 23, 310, and 470${^{\circ}C}$

  • KIm, Yang;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권2호
    • /
    • pp.69-72
    • /
    • 1987
  • The structures of dehydrated $Ag_9Cs_3$-A treated with hydrogen gas at three different temperatures have been determined by single-crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at 23(1) $^{\circ}C$. All crystals were ion exchanged in flowing streams of aqueous $AgNO_3$/$CsNO_3$ with a mole ratio 1:3.0 to achieve the desired crystal composition. The structures treated with hydrogen at $23^{\circ}C(a=12.288(1)\;{\AA})\;and\;310^{\circ}C(a=12.291(2)\;{\AA})$ refined to the final error indices R1 = 0.091 and R2 = 0.079, and 0.065 and 0.073, respectively, using the 216 and 227 reflections, respectively, for which I >3${\sigma}$(I). In both of these structures, eight $Ag^+$ ions are found nearly at 6-ring centers, and three $Cs^+$ ions lie at the centers of the 8-rings at sites of $D_{4h}$ symmetry. One $Ag^{\circ}atom$, presumably formed from the reduction of a $Ag^+$ ion by an oxide ion of a residual water molecule or of the zeolite framework during the dehydration process, is retained within the zeolite, perhaps in a cluster. In these two structures hydrogen gas could not enter the zeolite to reduce the $Ag^+$ ions because the large $Cs^+$ ions blocked all the 8-windows. However, hydrogen could slowly diffuse into the zeolite and was able to reach and to reduce about half of the $Ag^+$ ions in the structure only at high temperature ($470^{\circ}C$). The silver atoms produced migrated out of the zeolite framework, and the protons generated led to substantial crystal damage.

Preparation and Electrical Properties of Manganese-incorporated Neodymium Oxide System

  • Jong Sik Park;Keu Hong Kim;Chul Hyun Yo;Sung Han Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권9호
    • /
    • pp.713-718
    • /
    • 1994
  • Manganese-incorporated neodymium oxide systems with a variety of Mn mol% were prepared to investigate the effect of doping on the electrical properties of neodymium oxide. XRD, XPS, SEM, DSC, and TG techniques were used to analyze the specimens. The systems containing 2, 5, 8, and 10 mol% Mn were found to be solid solutions by X-ray diffraction analysis and the lattice parameters were obtained for the single-phase hexagonal structure by the Nelson-Riley method. The lattice parameters, a and c, decreased with increasing Mn mol%. Scanning electron photomicrographs of the specimens showed that the grain size decreased with increasing Mn mol%. The curves of log conductivity plotted as a function of 1/T in the temperature range from 500 to 1000$^{\circ}C$ at $PO_2$'s of $10^{-5}$ to $10^{-1}$ atm for the specimens were divided into high-and low-temperature regions with inflection points near 820-890$^{\circ}C$. The activation energies obtained from the slopes were 0.53-0.87 eV for low-temperature region and 1.40-1.91 eV for high-temperature region. The electrical conductivities increased with increasing Mn mol% and $PO_2$, indicating that all the specimens were p-type semiconductors. At $PO_2$'s below $10^{-3}$ atm, the electrical conductivity was affected by the chemisorption of oxygen molecule in the temperature range of 660 to 850$^{\circ}C$. It is suggested that electron holes generated by oxygen incorporation into the oxide are charge carriers for the electrical conduction in the high-temperature region and the system includes ionic conduction owing to the diffusion of oxygen atoms in the low-temperature region.