• Title/Summary/Keyword: single scattering model

Search Result 73, Processing Time 0.029 seconds

Extended Drude model analysis of n-doped cuprate, Pr0.85LaCe0.15CuO4

  • Lee, Seokbae;Song, Dongjoon;Jung, Eilho;Roh, Seulki;Kim, Changyoung;Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.16-20
    • /
    • 2015
  • We investigated optical properties of an electron-doped copper oxide high temperature superconductor, $Pr_{0.85}LaCe_{0.15}CuO_4$ (PLCCO) single crystal. We obtained the optical conductivity from measured reflectance at various temperatures. We found our data contained c-axis longitudinal optical (LO) phonon modes due to miscut and intrinsic lattice distortion. We applied an extended Drude model to study the correlations between charge carriers in the system. The LO phonons appear as strong sharp peaks in the optical scattering rate. We tried to remove the LO phonon modes by using the energy loss function, which also shows the LO phonons as peaks, and could not remove them completely. We extracted the electron-boson spectral density function using a generalized Allen's formula. We observed that the resulting electron-boson density show similar temperature dependence as hole-doped cuprates.

Normal-state charge dynamics of ternary platinum germanide superconductor La2Pt3Ge5

  • Song, S.J.;Sung, N.H.;Cho, B.K.;Moon, S.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.12-15
    • /
    • 2015
  • We report on the infrared spectroscopic studies of the normal-state electronic response of rare-earth ternary platinum germanide superconductor $La_2Pt_3Ge_5$. We analyzed the temperature-dependent optical conductivity spectra using the Drude-Lorentz oscillator model. We found that the two Drude responses with distinct scattering rates are required to explain the charge dynamics at 10 K while a single Drude mode could reproduce the far-infrared conductivity at higher temperatures. Our results indicated the two-band character of the electronic structure and highlighted the disparate temperature evolution of the electrodynamics of the two electronic states.

Numerical Simulation of Radio Signal Characteristics in Meteor Burst Radio Channel (유성 버스트 통신 경로의 무선 신호 특성 해석)

  • 김병철;미하일티닌
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.563-569
    • /
    • 2004
  • The formulas taking into account the fundamental features of a meteoric radio propagation are obtained. Numerical simulation analysis has shown complex space structure of a field. Time behavior of intensity are researched taking into account nonstationary model. It is shown, this behavior essentially depends on parameters of a meteor trail, and that there is large variety of time dependencies of the signal intensity at the single scattering. In particular, at appropriate parameters of a meteor underdense trail it is possible large duration meteor bursts with which usually refer to an overdense meteor propagation.

Position Uncertainty due to Multi-scattering in the Scintillator Array of Dual Collimation Camera (복합 집속 카메라의 섬광체배열에서 다중산란에 의한 위치 불확실성)

  • Lee, Won-Ho
    • Journal of radiological science and technology
    • /
    • v.31 no.3
    • /
    • pp.287-292
    • /
    • 2008
  • Position information of radiation interactions in detection material is essential to reconstruct a radiation source image. With most position sensing techniques, the position information of a single interaction inside the detectors can be precisely obtained. Each interaction position of multi-scattering inside scintillators, however, can not be individually measured and only the average of the scattering positions can be obtained, which causes the uncertainty in the measured interaction position. In this paper, the position uncertainties due to the multi-scattering were calculated by Monte Carlo simulation. The simulation model was a 50 by 50 by 5 mm $LaCl_3$(Ce) scintillator(pixel size is 2 by 2 by 5mm) which was utilized for the dual collimation camera. The dual collimation camera uses the information from both photoelectric effect and Compton scattering, and therefore, position uncertainties for both partial and full energy deposition of radiation interactions are calculated. In the case of partial energy deposition(PED), the standard deviations of positions are less than $1{\sim}2mm$, which means the uncertainty caused by multi-scattering is not significant. Because the effect of the multi-scattering with PED is insignificant, the multi-scattering has little effect on the performance of Compton imaging of dual collimation camera. In the case of full energy deposition(FED), however, the standard deviation of the positions is about twice that of the pixel size of the 1stdetector, except for 122keV incident radiations. Therefore, the standard deviations caused by multi-scatterings should be considered in the design of the coded mask of the dual collimation camera to avoid artifact on the reconstructed image. The position uncertainties of the FEDs are much larger than those of the PEDs for all radiation energies and the ratio of PEDs to FEDs increases when the incident radiation energy increases. The position uncertainties of both PEDs and FEDs are dependent on the incident radiation energy.

  • PDF

Sensitivity Analysis of Volcanic Ash Inherent Optical Properties to the Remote Sensed Radiation (화산재입자의 고유 광학특성이 원격탐사 복사량에 미치는 민감도 분석)

  • Lee, Kwon-Ho;Jang, Eun-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Volcanic ash (VA) can be estimated by remote sensing sensors through their spectral signatures determined by the inherent optical property (IOP) including complex refractive index and the scattering properties. Until now, a very limited range of VA refractive indices has been reported and the VA from each volcanic eruption has a different composition. To improve the robustness of VA remote sensing, there is a need to understanding of VA - radiation interactions. In this study, we calculated extinction coefficient, scattering phase function, asymmetry factor, and single scattering albedo which show different values between andesite and pumice. Then, IOPs were used to analyze the relationship between theoretical remote sensed radiation calculated by radiative transfer model under various aerosol optical thickness (${\tau}$) and sun-sensor geometries and characteristics of VA. It was found that the mean rate of change of radiance at top of atmosphere versus ${\tau}$ is six times larger than in radiance values at 0.55 ${\mu}m$. At the surface, positive correlation dominates when ${\tau}$ <1, but negative correlation dominates when ${\tau}$ >1. However, radiance differences between andesite and pumice at 11 ${\mu}m$ are very small. These differences between two VA types are expressed as the polynomial regression functions and that increase as VA optical thickness increases. Finally, these results would allow VA to be better characterized by remote sensing sensors.

A Study on the Theory of $\frac {1}{f}$ Noise in Electronic Devies (전자소자에서의 $\frac {1}{f}$잡음에 관한 연구)

  • 송명호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.3 no.1
    • /
    • pp.18-25
    • /
    • 1978
  • The 1/f noise spectrum of short-circuited output drain current due to the Shockley-Read-Hal] recombination centers with a single lifetime in homogeneous nondegenerate MOS-field effcte transtors with n-type channel is calculated under the assumptions that the quasi-Fermi level for the carriers in each energy band can not be defined if we include the fluctuation for time varying quantities. and so 1/f noise is a majority carrier effect. Under these assumptions the derived 1/f noise in this paper show some essential features of the 1/f noise in MOS-field effect transistors. That is, it has no lowfrequency plateau and is proportionnal to the channel cross area A and to the driain bias voltage Vd and inversely proportional to the channel length L3 in MOS field effect transistors. This model can explain the discrepancy between the transition frequency of the noise spectrum from 1/f- response to 1/f2 and the frequency corresponding to the relaxation time related to the surface centers in p-n junction diodes. In this paper the results show that the functional form of noise spectrum is greatly influenced by the functional forms of the electron capture probability cn (E) and the relaxation time r (E) for scattering and the case of lattice scattering show to be responsible for the 4 noise in MOS fold effect transistors. So we canconclude that the source of 1/f noise is due to lattice scattering.

  • PDF

Sensitivity of Aerosol Optical Parameters on the Atmospheric Radiative Heating Rate (에어로졸 광학변수가 대기복사가열률 산정에 미치는 민감도 분석)

  • Kim, Sang-Woo;Choi, In-Jin;Yoon, Soon-Chang;Kim, Yumi
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • We estimate atmospheric radiative heating effect of aerosols, based on AErosol RObotic NETwork (AERONET) and lidar observations and radiative transfer calculations. The column radiation model (CRM) is modified to ingest the AERONET measured variables (aerosol optical depth, single scattering albedo, and asymmetric parameter) and subsequently calculate the optical parameters at the 19 bands from the data obtained at four wavelengths. The aerosol radiative forcing at the surface and the top of the atmosphere, and atmospheric absorption on pollution (April 15, 2001) and dust (April 17~18, 2001) days are 3~4 times greater than those on clear-sky days (April 14 and 16, 2001). The atmospheric radiative heating rate (${\Delta}H$) and heating rate by aerosols (${\Delta}H_{aerosol}$) are estimated to be about $3\;K\;day^{-1}$ and $1{\sim}3\;K\;day^{-1}$ for pollution and dust aerosol layers. The sensitivity test showed that a 10% uncertainty in the single scattering albedo results in 30% uncertainties in aerosol radiative forcing at the surface and at the top of the atmosphere and 60% uncertainties in atmospheric forcing, thereby translated to about 35% uncertainties in ${\Delta}H$. This result suggests that atmospheric radiative heating is largely determined by the amount of light-absorbing aerosols.

Impact of Lyman alpha pressure on metal-poor dwarf galaxies

  • Kimm, Taysun;Haehnelt, Martin;Blaizot, Jeremy;Katz, Harley;Michel-Dansac, Leo;Garel, Thibault;Rosdahl, Joakim;Teyssier, Romain
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2018
  • Understanding the origin of strong galactic outflows and the suppression of star formation in dwarf galaxies is a key problem in galaxy formation. Using a set of radiation-hydrodynamic simulations of an isolated dwarf galaxy, we show that the momentum transferred from resonantly scattered Lyman-alpha(LyA) photons can suppress star formation by a factor of two in metal-poor galaxies by regulating the dynamics of star-forming clouds before the onset of supernova explosions (SNe). This is possible because each LyA photon resonantly scatters and imparts ~10-300 times greater momentum than in the single scattering limit. Consequently, the number of star clusters predicted in the simulations is reduced by a factor of ~5, compared to the model without the early feedback. More importantly, we find that galactic outflows become weaker in the presence of strong LyA radiation feedback, as star formation and associated SNe become less bursty. We also examine a model in which radiation field is arbitrarily enhanced by a factor of up to 10, and reach the same conclusion. The typical mass-loading factors in our metal-poor dwarf system are estimated to be ~5-10 near the mid-plane, while it is reduced to ~1 at larger radii.

  • PDF

Growth and Optical Properties of SnSe/BaF2 Single-Crystal Epilayers (SnSe/BaF2 단결정 박막의 성장과 광학적 특성)

  • Lee, II Hoon;Doo, Ha Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.209-215
    • /
    • 2002
  • This study investigated the crystal growth, crystalline structure and the basic optical properties of $SnSe/BaF_2$ epilayers. The SnSe epilayer was grown on $BaF_2$(111) insulating substrates using a hot wall epitaxy(HWE) technique. It was found from the analysis of X-ray diffraction patterns that $SnSe/BaF_2$ epilayer was growing to single crystal with orthorhombic structure oriented [111] along the growth direction. Using Rutherford back scattering(RBS), the atomic ratios of the SnSe was found to be stoichiometric, almost 50 : 50. The best values for the full width at half maximum (FWHM) of the DCXRD was 163 arcsec for SnSe epilarer. The epilayer-thickness dependence of the FWHM of the DCXRD shows that the quality of the $SnSe/BaF_2$ is as expected. The dielectric function ${\varepsilon}$(E) of a semiconductor is closely related to its electronic energy band structure and such relation can be drawn from features around the critical points in the optical spectra. The real and imaginary parts(${\varepsilon}_1$ and ${\varepsilon}_2$) of the dielectric function ${\varepsilon}$ of SnSe were measured. These data are analyzed using a theoretical model known as the model dielectric function(MDF). The optical constants related to dielectric function such as the complex refractive index(n*-n+ik), absorption coefficient (${\alpha}$) and normal- incidence reflectivity (R) are also presented for $SnSe/BaF_2$.

  • PDF

Growth and Optical Properties of PbSnSe Epilayers Grown on BaF2(111) (PbSnSe 단결정 박막의 성장과 광학적 특성)

  • Lee, Il-Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2004
  • This study investigated the crystal growth, crystalline structure and the basic optical properties of $PbSnSe/BaF_2$ epilayers. The PbSnSe epilayer was grown on $BaF_2$(111) insulating substrates using a hot wall epitaxy (HWE) technique. It was found from the analysis of X-ray diffraction patterns that $PbSnSe/BaF_2$ epilayer was grown single crystal with a rock-salt structure oriented along [111] the growth direction. Using Rutherford back scattering, the atomic ratios of the PbSnSe was found to be proper stoichiometric. The best values for the full width at half maximum (FWHM) of the DCXRD was 162 arcsec for PbSnSe epilayer. The epilayer-thickness dependence of the FWHM of the DCXRD shows that the quality of the $PbSnSe/BaF_2$ is as expected. The dielectric function ${\varepsilon}(E)$ of a semiconductor is closely related to its electronic energy band structure and such relation can be drawn from features around the critical points(CPs) in the optical spectra. The real and imaginary parts(${\varepsilon}1$ and ${\varepsilon}2$) of the dielectric function ${\varepsilon}$ of PbSe were measured, and the observed spectra reveal distinct structures at energies of the E1, E2 and E3 CPs. These data are analyzed using a theoretical model known as the model dielectric function (MDF). The optical constants related to dielectric function such as the complex refractive index ($n^*=n+ik$), absorption coefficient (${\alpha}$) and normal-incidence reflectivity (R) are also presented for $PbSnSe/BaF_2$.

  • PDF