• Title/Summary/Keyword: single molecule

Search Result 350, Processing Time 0.035 seconds

Two 3D CdII and ZnII Complexes Based on Flexible Dicarboxylate Ligand and Nitrogen-containing Pillar: Synthesis, Structure, and Luminescent Properties

  • Liu, Liu;Fan, Yan-Hua;Wu, Lan-Zhi;Zhang, Huai-Min;Yang, Li-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3749-3754
    • /
    • 2013
  • Two 3D isomorphous and isostructural complexes, namely, $[Zn(BDOA)(bpy)(H_2O)_2]_n$ (1) and $[Cd(BDOA)-(bpy)(H_2O)_2]_n$ (2); (BDOA = Benzene-1,4-dioxyacetic acid, bpy = 4,4'-bipyridine) were synthesized under hydrothermal conditions and characterized by means of elemental analyses, thermogravimetric (TG), infrared spectrometry, and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the triclinic system, space group P-1 and each metal ion in the complexes are six-coordinated with the same coordination environment. In the as-synthesized complexes, $BDOA^{2-}$ anions link central metal ions to form a 1D zigzag chain $[-BDOA^{2-}-Zn(Cd)-BDOA^{2-}-Zn(Cd)-]_{\infty}$, whereas bpy pillars connect metal ions to generate a 1D linear chain $[-bpy-Zn(Cd)-bpy-Zn(Cd)-]_{\infty}$. Both infinite chains are interweaved into 2D grid-like layers which are further constructed into a 3D open framework, where hydrogen bonds play as the bridges between the adjacent 2D layers. Luminescent properties of complex 1 showed selectivity for $Hg^{2+}$ ion.

A Series of 3D Lanthanide Complexes Containing (La(III), Sm(III) and Gd(III)) Metal-organic Frameworks: Synthesis, Structure, Characterization and Their Luminescent Properties

  • Zhang, Huai-Min;Yang, Hao;Wu, Lan-Zhi;Song, Shuang;Yang, Li-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3777-3787
    • /
    • 2012
  • Three kinds of 3D isomorphous and isostructural coordination polymers, namely, $\{[Ln_2(PDA)_3(H_2O)_3]{\cdot}0.25H_2O\}_{\infty}$ (Ln = La(1), Sm(2), and Gd(3)) ($PDA^{2-}$ = pyridine-2,6-dicarboxylate anion) have been synthesized under hydrothermal conditions and characterized by elemental analyses, IR spectroscopy, thermal analyses and single crystal X-ray diffraction. In these MOFs, Ln(III) centers adopt eight-coordinated and nine-coordinated with the $N_1O_7$ and $N_2O_7$ donor sets to construct distorted trianglar dodecahedron geometry and tricapped trigonal prism configurations, respectively. Based on the building block of tetranuclear homometallic $Ln_4C_4O_8$ unit (16-membered ring), 1-3 are connected into highly ordered 2D sheets via O-C-O linkers and further constructed into 3D architectures through hydrogen bonds. Crystallographic parameters suggest that the lanthanide contraction effect exist in these coordination polymers. Luminescent properties of the lanthanide-based MOFs (metal-organic frameworks) have been measured at room temperature, which reveal that they presenting ionselective characters toward certain metals, such as $Mg^{2+}$, $Cd^{2+}$ and $Pb^{2+}$ ions.

Synthesis and Magnetic Relaxation of [Mn12O12(O2CCH2CH2CH2Cl)16(H2O)4] Complex

  • Jeon, Won-Suk;Jin, Mi-Kyung;Kim, Yoo-Jin;Jung, Duk-Young;Suh, Byoung-Jin;Yoon, Seok-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1036-1040
    • /
    • 2004
  • $Mn_{12}O_{12}(O_2CCH_2CH_2CH_2Cl)_{16}(H_2O)_4]$ (noted as $Mn_{12}$-BuCl), a new polynuclear complex of manganese chlorobutyrate has been successfully prepared by substitution of acetate with 4-chlorobutyric acid. The $Mn_{12}-BuCl$ crystallizes into triclinic space group P-1 with a = 14.5560(11) ${\AA}$, b = 14.5819(11) TEX>${\AA}$, c = 27.265(2) ${\AA}$, ${\alpha}\;=\;84.1140(10)^{\circ}\;,\;{\beta}\;=\;88.805(2)^{\circ},\;{\gamma}\;=\;89.8820(10)^{\circ}$, and Z = 2. The local environments of manganese 3+ and 4+ ions of the title compound are close to those of other $Mn_{12}$ compounds. The electrochemical data for $Mn_{12}-BuCl$ involve reversible reactions of two-electron reductions. The $Mn_{12}-BuCl$ also presents magnetic relaxation below 10 K implying that each molecule behaves as a single molecule magnet.