• Title/Summary/Keyword: single frequency network (SFN) channel

Search Result 26, Processing Time 0.024 seconds

A Study on the Interference in Single Frequency Network and On Channel Repeater (SFN 및 OCR의 간섭영향에 관한 연구)

  • 최성웅;이형수;오우진
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.737-740
    • /
    • 2003
  • SFN (Single Frequency Network) and OCR (On Channel Repeater) are often considered for the efficiency of frequency allotment in digital TV. In this paper, we discuss the performance and evaluate some coverage criterions for SFN and OCR. Also, we propose MATLAB simulator for coverage planning and estimation.

  • PDF

Efficient Channel Delay Estimation for OFDM Systems over Doubly-Selective Fading Channels

  • Heo, Seo Weon;Lim, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2218-2230
    • /
    • 2012
  • In this paper, we propose an efficient channel delay estimation method for orthogonal frequency-division multiplexing (OFDM) systems, especially over doubly-selective fading channels which are selective in both the symbol time domain and subcarrier frequency domain. For the doubly-selective fading channels in single frequency network (SFN), long and strong echoes exist and thus the conventional discrete Fourier Transform (DFT) based channel delay estimation system often fails to produce the exact channel delay profile. Based on the analysis of the discrete-time frequency response of the channel impulse response (CIR) coefficients in the DFT-based channel delay estimation system, we develop a method to effectively extract the true CIR from the aliased signals by employing a simple narrow-band low-pass filter (NB-LPF). The performance of the proposed system is verified using the COST207 TU6 SFN channel model.

Equalization On-Channel Repeater for Single Frequency Network of Terrestrial Digital Multimedia Broadcasting (T-DMB의 SFN을 위한 등화형 동일채널 중계기)

  • Park, Sung-Ik;Park, So-Ra;Eum, Ho-Min;Lee, Yong-Tae;Kim, Heung-Mook
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.365-379
    • /
    • 2008
  • In this paper we consider technological requirements of the on-channel repeater to broadcast the terrestrial digital multimedia broadcasting (T-DMB) signals using single frequency networks (SFN) and propose the configuration and implementation method of the equalization on-channel repeater (OCR) that meet such requirements. The proposed equalization OCR not only has short time delay, but shows high output power and good quality of output signal by removing a feedback signal due to incomplete antenna isolation and multipath signal existing between the main transmitter and the OCR. In addition, computer simulations and laboratory tests results are provided to figure out performance of the proposed equalization OCR.

Adaptive Complex Interpolator for Channel Estimation in Pilot-Aided OFDM System

  • Liu, Guanghui;Zeng, Liaoyuan;Li, Hongliang;Xu, Linfeng;Wang, Zhengning
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.496-503
    • /
    • 2013
  • In an orthogonal frequency division multiplexing system, conventional interpolation techniques cannot correctly balance performance and overhead when estimating dynamic long-delay channels in single frequency networks (SFNs). In this study, classical filter analysis and design methods are employed to derive a complex interpolator for maximizing the resistible echo delay in a channel estimator on the basis of the correlation between frequency domain interpolating and time domain windowing. The coefficient computation of the complex interpolator requires a key parameter, i.e., channel length, which is obtained in the frequency domain with a tentative estimation scheme having low implementation complexity. The proposed complex adaptive interpolator is verified in a simulated digital video broadcasting for terrestrial/handheld receiver. The simulation results indicate that the designed channel estimator can not only handle SFN echoes with more than $200{\mu}s$ delay but also achieve a bit-error rate performance close to the optimum minimum mean square error method, which significantly outperforms conventional channel estimation methods, while preserving a low implementation cost in a short-delay channel.

Interference Cancellation On-Channel Regenerative Repeater for the Single Frequency Network of ATSC Terrestrial Broadcasting (ATSC 지상파 방송의 단일주파수 망 구성을 위한 간섭제거 동일 채널 재생 중계기)

  • Kim, Yong-Seok;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.295-302
    • /
    • 2011
  • In this paper we consider technological requirements to broadcast digital television signals using single frequency networks(SFN) in the Advanced Television Systems Committee(ATSC) transmission systems and propose Interference Cancellation Digital On Channel Regenerative Repeater(IC-DOCR) thar overcomes the limitation of EDOCR(Equalization Digital On Channel Repeater) proposed by ETRI. The proposed IC-DOCR maintains the benefits of EDOCR that have good output signal quality removing multi-path, additive white Gaussian noise(AWGN). In additional, since the Interference Cancellation algorithm using the 8-VSB symbol demodulation of received signal removes the Interference of feedback signal, IC-DOCR improve the weakness of EDOCR that have low isolation between receive and transmit antenna so that can overcome the limitation of output signal power. we did analysis and verification of the proposed system performance using computational simulation.

Equalization Digital On-Channel Repeater for Single Frequency Network Composition of ATSC Terrestrial Digital TV Broadcasting (ATSC 지상파 디지털 TV 방송의 단일 주파수 망 구성을 위한 등화형 디지털 동일 채널 중계기)

  • Park Sung Ik;Eum Homin;Lee Yong-Tae;Kim Heung Mook;Seo Jae Hyun;Kim Hyoung-Nam;Kim Seung Won
    • Journal of Broadcast Engineering
    • /
    • v.9 no.4 s.25
    • /
    • pp.371-383
    • /
    • 2004
  • In this paper we consider technological requirements to broadcast digital television signals using single frequency networks (SFN) in the Advanced Television Systems Committee (ATSC) transmission systems and propose equalization digital on-channel repeater (EDOCR) that overcomes the limitations of conventional digital on-channel repeaters (DOCRs). Since there are no forward error correction (FEC) decoder and encoder, the EDOCR does not have an ambiguity problem. In addition, since an adaptive equalizer in the EDOCR removes multi-path signals, additive white Gaussian noise (A WGN), and feedback signal due to low antenna isolation, the EDOCR may have good output signal quality with high power.

Field Test Results Of A DTV Distributed Translator Network (DTV 분산중계망 필드 테스트 결과)

  • Wang, Soo-Hyun;Suh, Young-Woo;Mok, Ha-Kyun;Lee, Jae-Young;Lee, Yong-Hoon;Kim, Heung-Mook
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.463-478
    • /
    • 2008
  • A Distributed Translator Network(DTxR) is a cost-effective and frequency-effective method which can use existing transmission utilities and can be constructed in a shorter time as compared with Multiple Frequency Network(MFN) or Single Frequency Network(SFN) using On Channel Repeater(OCR). In order to verify the feasibility of DTxR, this field test was done in 30 points of north-west area in Seoul using 3rd, 5th, and 6th generation DIV receivers. Electric field strength, noise margin and ease of reception were measured and subjective evaluation of video quality was done in these points during the field test. With the test result, an improvement of receiving quality was obtained and an ease of reception was increased in case of the 5th. and 6th. receiver. From the results, we conclude that DTxR is a feasible method in DIV networks.

Performance Improvement of Terrestrial DTV Receivers Using Frequency-domain Equalization (주파수 영역 등화를 이용한 지상파 DTV 수신 성능 개선)

  • Son Sang-Won;Kim Ji-Hyun;Kim Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.351-363
    • /
    • 2006
  • The 8-VSB modulation, the transmission standard for the terrestrial digital television(DTV) of the Advanced Television Systems Committee(ATSC), suffers from multipath fading because it conveys information on the amplitude. To solve this problem, decision feedback equalizers(DFE's) have been commonly used in terrestrial DTV receivers. However, under severe channels, such as a 0 dB ghost channel or a single frequency network (SFN) channel, the DFE shows unstable convergence due to the error propagation caused by decision errors. Instead of unstable time-domain DFE schemes, by proposing a frequency-domain direct-inversion equalization method, we try to guarantee stable equalization and achieve low symbol error rates. To secure the existence of a channel inverse, channel-matched filtering and noncausal filtering are carried out prior to equalization. Simulation results show that the proposed method performs much better than existing DFE schemes in terms of both the stability and the symbol error rate.

Reception Power Estimation using TxID Signal (TxID 신호를 이용한 수신전력 추정)

  • Park, Sung-Ik;Kim, Heung-Mook;Oh, Wang-Rok
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.311-321
    • /
    • 2009
  • In a single frequency network (SFN) for Advanced Television Systems Committee (ATSC) terrestrial digital television (DTV) system, the interference due to the use of same frequency among multiple transmitters or repeaters is inevitable for receivers. This problem can be solved by adjusting transmit power and time of each transmitter and repeater. To adjust SFNs, the ATSC recommended practice (RP) introduces a transmitter identification (TxID) signal which is embedded in a signal from each transmitter or repeater. This paper proposes an efficient method to estimate the individual reception power from each transmitter or repeater based on the channel profile of SFN and the total reception power. Moreover, field test results are provided to evaluate the performance of the proposed method.

Interference Cancellation On-Channel Regenerative Repeater Laboratory Test for ATSC Terrestrial Broadcasting (ATSC 지상파 방송을 위한 간섭제거 동일 채널 재생 중계기 성능평가)

  • Kim, Yong-Seok;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.43-52
    • /
    • 2012
  • This paper presents and analyzes laboratory test results of Interference Cancellation Digital On Channel Regenerative Repeater(IC-DOCR) to broadcast digital television signals in the Advanced Television Systems Committee(ATSC) transmission systems using single frequency networks(SFN). IC-DOCR laboratory test is classified to receiver test, transmitter test, and feedback interference cancellation test. The receiver part includes random noise, single echo, multi-path ensembles, and adjacent channel interference test. The transmitter part includes out-of channel emission, equality of transmitting signal, and phase noise test. By the laboratory test, the receiver part of the IC-DOCR eliminates 28dB of feedback signal higher than the received signal and has 17.8dB at TOV(Threshold Of Visibility) under random noise environment. Also, the transmitter part satisfies the specification of US FCC(Federal Communications Commission) as well as maintains good output signal quality for guaranteeing more than SNR 30dB.