• Title/Summary/Keyword: single fracture

Search Result 660, Processing Time 0.027 seconds

Curing Behavior and Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites by Electrical Resistivity Measurement under Tensile/Compressive Tests (전기증착된 탄소섬유/에폭시 복합재료의 인장/압축 하중하에서의 전기저항 측정법을 이용한 경화 및 계면특성)

  • Park, Joung-Man;Lee, Sang-Il;Kim, Jin-Won
    • Journal of Adhesion and Interface
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • Curing behavior and interfacial properties were evaluated using electrical resistance measurement and tensile/compressive fragmentation test. Electrical resistivity difference (${\Delta}R$) during curing process was not observed in a bare carbon fiber. On the other hand, ${\Delta}R$ appeared due to the matrix contraction in single-carbon fiber/epoxy composite. Logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to the infinity when the fiber fracture occurred under tensile loading, whereas that of the ED composite reached relatively broadly up to the infinity. Comparing to the untreated case, interfacial shear strength (IFSS) of the ED treated composite increased significantly in both tensile fragmentation and compressive Broutman test. Microfailure modes of the untreated and the ED treated fiber composite showed the debonding and the cone shapes in tensile test, respectively. For compressive test, fractures of diagonal slippage were observed in both untreated and the ED treated composite. Sharp-end shape fractures exhibited in the untreated composite, whereas relatively dull fractures showed in the ED Heated composite. It is proved that ED treatments affected differently on the interfacial adhesion and microfailure mechanism under tensile/compressive tests.

  • PDF

AGING EFFECT ON THE MICROTENSILE BOND STRENGTH OF SELF-ETCHING ADHESIVES (자가부식 접착제의 미세인장접착강도에 대한 시효처리 효과)

  • Park, Jin-Seong;Kim, Jong-Sun;Kim, Min-Su;Son, Ho-Hyeon;Gwon, Hyeok-Chun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.6
    • /
    • pp.415-426
    • /
    • 2006
  • In this study, the changes in the degree of conversion (DC) and the microtensile bond strength (MTBS) of self-etching adhesives to dentin was investigated according to the time after curing. The MTBS of Single Bond (SB, 3M ESPE, USA), Clearfil SE Bond (SE, Kuraray, Japan), Xeno-III (XIII, Dentsply, Germany), and Adper Prompt (AP, 3M ESPE, USA) were measured at 48h, at 1 week and after thermocycling for 5,000 cycles between 5$^{\circ}$C and 55$^{\circ}$C. The DC of the adhesives were measured immediately, at 48h and at 7 days after curing using a Fourier Transform Infra-red Spectrometer. The fractured surfaces were also evaluated with scanning electron microscope. The MTBS and DC were significantly increased with time and there was an interaction between the variables of time and material (MTBS, 2-way ANOVA, p = 0.018; DC, Repeated Measures ANOVA, p < 0.001). The low DC was suggested as a cause of the low MTBS of self-etching adhesives, XIII and AP, but the increase in the MTBS of SE and AP after 48h could not be related with the changes in the DC. The microscopic maturation of the adhesive layer might be considered as the cause of increasing bond strength.

Photovoltaic performance evaluation of the bonded single crystalline silicon solar cell on composite specimens under mechanical loading (기계적 하중 하에서 복합재료 시험편에 접착된 단결정 실리콘태양전지의 성능평가)

  • Kim, Jong-Cheon;Choi, Ik-Hyeon;Kim, Dae-Hyun;Jeong, Seong-Kyun
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.56-63
    • /
    • 2011
  • The objective of this study is to investigate appropriate bonding methods of solar cells in order to apply solar cells, which have been receiving particular attention as a renewable energy due to fossil energy depletion and environment issues, to composite structures. Back-contact solar cells with approximately 24.2% energy conversion efficiency were used in this study. Since silicon-based solar cells are mechanically fragile, the secondary-bonding methods using adhesive were examined in this study. The experiment was conducted with three kinds of bonding materials such as EVA film, Resin film and elastic adhesive. The performance of solar cells for three types of adhesives under mechanical loading on test specimens is conducted. In addition, the measuring equipment was designed to evaluate the performance of the solar cells under mechanical loading in real time and the fracture characteristics depending on bonding materials were evaluated. The reason decreasing solar cells efficiency were analyzed and considered by Fractography. The results show that the solar cell performance is largely affected by bonding techniques. Moreover, the bonding method using elastic adhesive shows best solar cell efficiency.

Application of Electrical Resistivity Tomography Using Single Well in Seawater Intrusion Areas (해수침투지역에서 단일 시추공을 이용한 전기비저항 토모그래피 탐사의 적용성)

  • Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.369-376
    • /
    • 2007
  • Electrical resistivity tomography was carried out at seawater intrusion monitoring wells located at watershed in coastal areas. It is difficult to identify the characteristics of resistivity near monitoring well in case of using high signalto-noise ratio array due to the high conductivity condition in coastal aquifer although electrical resistivity survey is well adopted to delineate hydrogeological characteristics with the distribution of electrical resistivity. To improve the quality of electrical resistivity survey for two sites with seawater intrusion monitoring wells, inversion with the results of holeto-surface electrical resistivity tomography using single well was executed. The results of inversion for aquifer near wells were verified with the results of drilling log with the informations of fracture, electrical conductivity logging and normal resistivity logging. The inversion for aquifer near one of two wells was also performed at low and high tide with the same electrodes, respectively. From the inversion result, it is possible to obtain the resistivity images with high resolution and to identify the characteristics of aquifer related to seawater intrusion with tidal fluctuation. From this study, it was demonstrated that the hole-to-surface electrical resistivity tomography method accompanied with drilling log, electrical conductivity logging and normal resistivity logging would be useful to delineate the hydrogeological structures near monitoring wells in coastal areas.

Genome-Wide Association Study of Bone Mineral Density in Korean Men

  • Bae, Ye Seul;Im, Sun-Wha;Kang, Mi So;Kim, Jin Hee;Lee, Soon Hang;Cho, Be Long;Park, Jin Ho;Nam, You-Seon;Son, Ho-Young;Yang, San Deok;Sung, Joohon;Oh, Kwang Ho;Yun, Jae Moon;Kim, Jong Il
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.62-68
    • /
    • 2016
  • Osteoporosis is a medical condition of global concern, with increasing incidence in both sexes. Bone mineral density (BMD), a highly heritable trait, has been proven a useful diagnostic factor in predicting fracture. Because medical information is lacking about male osteoporotic genetics, we conducted a genome-wide association study of BMD in Korean men. With 1,176 participants, we analyzed 4,414,664 single nucleotide polymorphisms (SNPs) after genomic imputation, and identified five SNPs and three loci correlated with bone density and strength. Multivariate linear regression models were applied to adjust for age and body mass index interference. Rs17124500 ($p=6.42{\times}10^{-7}$), rs34594869 ($p=6.53{\times}10^{-7}$) and rs17124504 ($p=6.53{\times}10^{-7}$) in 14q31.3 and rs140155614 ($p=8.64{\times}10^{-7}$) in 15q25.1 were significantly associated with lumbar spine BMD (LS-BMD), while rs111822233 ($p=6.35{\times}10^{-7}$) was linked with the femur total BMD (FT-BMD). Additionally, we analyzed the relationship between BMD and five genes previously identified in Korean men. Rs61382873 (p = 0.0009) in LRP5, rs9567003 (p = 0.0033) in TNFSF11 and rs9935828 (p = 0.0248) in FOXL1 were observed for LS-BMD. Furthermore, rs33997547 (p = 0.0057) in ZBTB and rs1664496 (p = 0.0012) in MEF2C were found to influence FT-BMD and rs61769193 (p = 0.0114) in ZBTB to influence femur neck BMD. We identified five SNPs and three genomic regions, associated with BMD. The significance of our results lies in the discovery of new loci, while also affirming a previously significant locus, as potential osteoporotic factors in the Korean male population.

Continuous Time Markov Process Model for Nuclide Decay Chain Transport in the Fractured Rock Medium (균열 암반 매질에서의 핵종의 붕괴사슬 이동을 위한 연속시간 마코프 프로세스 모델)

  • Lee, Y.M.;Kang, C.H.;Hahn, P.S.;Park, H.H.;Lee, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.539-547
    • /
    • 1993
  • A stochastic approach using continuous time Markov process is presented to model the one-dimensional nuclide transport in fractured rock media as a further extension for previous works[1-3]. Nuclide transport of decay chain of arbitrary length in the single planar fractured rock media in the vicinity of the radioactive waste repository is modeled using a continuous time Markov process. While most of analytical solutions for nuclide transport of decay chain deal with the limited length of decay chain, do not consider the case of having rock matrix diffusion, and have very complicated solution form, the present model offers rather a simplified solution in the form of expectance and its variance resulted from a stochastic modeling. As another deterministic way, even numerical models of decay chain transport, in most cases, show very complicated procedure to get the solution and large discrepancy for the exact solution as opposed to the stochastic model developed in this study. To demonstrate the use of the present model and to verify the model by comparing with the deterministic model, a specific illustration was made for the transport of a chain of three member in single fractured rock medium with constant groundwater flow rate in the fracture, which ignores the rock matrix diffusion and shows good capability to model the fractured media around the repository.

  • PDF

Stress Intensity Factor of Cracked Plates with Bonded Composite Patch by p-Convergence Based Laminated Plate Theory (p-수렴 적층 평판이론에 의한 균열판의 팻취보강후 응력확대계수 산정)

  • Woo, Kwang-Sung;Han, Sang-Hyun;Yang, Seung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.649-656
    • /
    • 2008
  • The enhancement of the service life of damaged or cracked structures is a major issue for researchers and engineers. The hierarchic void element based on the integrals of Legendre polynomials is used to characterize the fracture behaviour of unpatched crack as well as repaired crack with bonded composite patches by computing the stress intensity factors and stress contours at the crack tip. Since the equivalent single layer approach is adopted in this study, the proposed element is necessary to represent a discontinuous crack part as a continuum body with zero stiffness. Thus the aspect ratio of this element to represent the crack should be extremely slender. The sensitivity of numerical solution with respect to energy release rate, displacement and stress has been tested to show the robustness of zero stiffness element as the aspect ratio is increased up to 2000. The stiffness derivative method and displacement extrapolation method have been applied to calculate the stress intensity factors of Mode I problem. It is noted that the proposed hierarchical void element can be one of alternatives to analyze the patched crack problems.

Single-unit fixed restoration using the automated crown shaping artificial intelligence program (자동 치관 형성 인공지능 프로그램을 이용한 단일 고정성 보철물 수복 증례)

  • Eun-Bi Park;Young-Eun Cho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.3
    • /
    • pp.169-178
    • /
    • 2024
  • Recently, several attempts have been made to integrate AI into the field of dentistry. To overcome the limitations of traditional fixed prosthetic fabrication methods such as CAD-CAM (computer-aided design-computer-aided manufacturing), AI programs are being developed for automated crown fabrication, and various studies are underway to applicate in clinical situation. In these case studies, single-unit fixed prostheses were fabricated using an AI program (Dentbird Crown, Imagoworks Inc, Seoul, Korea) in both the anterior and posterior regions and the fabrication time and accuracy were compared with previously used CAD-CAM method. The first case is a 44-year-old woman who presented for re-fabrication of a zirconia prosthesis due to a prosthesis fracture on the lingual side of the upper right lateral incisor. The second case is a 53-year-old male patient who presented for a crown restoration on an upper left first molar following root canal treatment, where he received a final zirconia restoration. In both cases, the first prosthesis was designed manually using a CAD program, the second prosthesis was designed using AI alone, and the third prosthesis was designed using AI and then modified by CAD program, and the three designs were superimposed to compare suitability. When evaluated after temporary placement, the final prosthesis demonstrates adequate stability, retention and support, resulting in functional and esthetic satisfaction.

Comparative study on the performance of butt fusion-welding processes for nuclear safety class large-diameter thick-walled PE pipes

  • Zhenchao Wang;Bin Wang;Aimin Xiang;Di Jiao;Fa Yu;Qiuju Zhang;Xiaoying Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4184-4194
    • /
    • 2024
  • New technologies in polymer synthesis and pipe extrusion equipment have led to the commercialization of high-performance, large-diameter, thick-wall high density polyethylene (HDPE) pipes. They have been used in the field of seawater transport and cooling to replace metal pipes, due to their advantages of high corrosion resistance and extensibility. Connection of HDPE pipe is important as it determines the safety of the entire piping system. Butt fusion welding is commonly used for HDPE pipe connection but may cause the formation of weak points in the welded joints, interfering the reliability of the pipeline system in the application of nuclear power plants. At present, there is a lack of research on evaluating the performance of welded joint for large-diameter thick-wall HDPE pipes made by butt fusion-welding. The purpose of this study is to investigate the influence of three different butt fusion-welding processes, i.e., single low pressure (SLP), single high pressure (SHP) and dual low pressure (DLP), by evaluating the performance of their welded joints, including characterizing tensile strength, extensibility, crystallinity and hardness. In specific, a thick-wall HDPE pipe with OD of 812.8 mm and wall thickness of 74 mm which is certified for nuclear safety class was used for study. Representative specimen from the outer, middle and inner part across the wall of the main pipe body and welded joints were taken for testing. Different test methods and specimens were designed to assess the feasibility of evaluating the welding performance from different welding process. The results showed that the mechanical properties of different locations of the welded joints were different, and the tensile strength and fracture energy of the middle part of the joint were lower than that of the inner and outer parts, which could be caused by the difference in the crystallinity and thickness of the melting zone influenced by welding processes, as can be seen from the analysis of DSC test and morphology observation. Hardness testing was conducted on the section of the welded joints, and it revealed that the micromechanical properties of the welded joints in the region of the heat-affected zone were enhanced significantly, which may be due to the annealing effect caused by welding process. In summary, The DLP process resulted in the best extensibility of the welded joints among three processes, suggesting that the joining pressure from welding process plays an important role in affecting the extensibility of the welded joints.

Development of an ECC(Engineered Cementitious Composite) Designed with Ground Granulated Blast Furnace Slag (고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발)

  • Kim, Yun-Yong;Kim, Jeong-Su;Ha, Gee-Joo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.21-28
    • /
    • 2006
  • This paper presents both experimental and analytical studies for the development of an ECC(Engineered Cementitious Composites) using ground granulated blast furnace slag(slag). This material has been focused on achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, micromechanics was adopted to properly select optimized range of the composition based on steady-state cracking theory and experimental studies on matrix, and interfacial properties. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties of the fiber in a matrix and the fracture toughness of mortar matrix. The addition of the slag resulted in slight increases in the frictional bond strength and the fracture toughness. Subsequent direct tensile tests demonstrate that the fiber reinforced mortar exhibited high ductile uniaxial tension behavior with a maximum strain capacity of 3.6%. Both ductility and tensile strength(~5.3 MPa) of the composite produced with slag were measured to be significantly higher than those of the composite without slag. The slag particles contribute to improving matrix strength and fiber dispersion, which is incorporated with enhanced workability attributed to the oxidized grain surface. This result suggests that, within the limited slag dosage employed in the present study, the contribution of slag particles to the workability overwhelms the side-effect of decreased potential of saturated multiple cracking.