• Title/Summary/Keyword: single electron transfer

Search Result 105, Processing Time 0.027 seconds

Photoaddition Reactions of N-Methylthiophthalimide with $\alpha$-Silyl-n-electron Donors via Single Electron Transfer-Desilylation and Hydrogen Atom Abstraction Pathways

  • Yoon, Ung-Chan;Oh, Sun-Wha;Moon, Seong-Chul;Hyung, Tae-Gyung
    • Journal of Photoscience
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2002
  • Studies have been conducted to explore photoaddition reactions of N-methylthiophthalimide with $\alpha$-silyl-n-electron donors Et$_2$NCH$_2$SiMe$_3$, n-PrSCH$_2$SiMe$_3$ and EtOCH$_2$SiMe$_3$. Photoaddition of $\alpha$-silyl amine Et$_2$NCH$_2$SiMe$_3$ to N-methylthiophthalimide occurs in $CH_3$CN and benzene to produce non-silicon containing adduct in which thiophthalimide thione carbon is bonded to $\alpha$-carbon of $\alpha$-silyl amine in place of the trimethylsilyl group. In contrast, photoaddition of EtOCH$_2$SiMe$_3$ to N-methylthiophthalimide generates two diastereomeric adducts in which thiophthalimide thione carbon is connected to $\alpha$-carbon of $\alpha$-silyl ether in place of u-hydrogen. Based on a consideration of the oxidation potentials of u-silyl-n-electron donors and the nature of photoadducts, mechanism for these photoadditions involving single electron transfer(SET) -desilylation and H atom abstraction pathways are proposed.

  • PDF

Single Electron Transfer Promoted Photocyclization Reactions of ($\omega$-Phthalimidoalkylthio) acetic Acids

  • Yoon, Ung-Chan;Lee, Sang-Jin;Oh, Sun-Wha;Cho, Dae-Won
    • Journal of Photoscience
    • /
    • v.8 no.3_4
    • /
    • pp.99-104
    • /
    • 2001
  • Studies have been conducted to explore single electron transfer (SET) promoted photocyclization reactions of ($\omega$-phthalimidoalkylthio)acetic acids (alkyl=ethyl, n-propyl, n-butyl, n -hexyl and n-nonyl). Photocyclizations occur in methanol in modest yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the carboxylic group. The initially formed cyclized products undergo efficient water eliminations to produce enthiol ethers in secondary ground state reactions.

  • PDF

Single Electron Transfer Induced Photoaddition Reactions of Silyl Enol Ether to N-Methylphthalimide

  • Oh, Sun-Wha;Kim, Jin-Young;Cho, Dae-Won;Choi, Jung-Hei;Yoon, Ung-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.629-634
    • /
    • 2007
  • Photochemical reactions of N-methylphthalimide with silyl enol ethers have been explored. Irradiations of phthalimide (1) and cyclic silyl enol ethers (5a-b) are observed to promote formation of photoreduced phthalimides and photoaddition products by sequential SET-desilylation pathways. The photoreaction of phthalimide (1) and acyclic silyl enol ethers (5c-d) leads to produce oxetanes which arise by competitive single electron transfer (SET) and classical 2+2 photocycloaddition (Parteno-Buchi reaction) pathways.

Single Electron Transfer (SET) Pathway: Nucleophilic Substitution Reaction of 4-Chloro-7-nitrobenzofurazan with Anilines in MeOH-MeCN Mixtures

  • Choi, Ho-June;Yang, Ki-Yull;Lee, Sang-Gyeong;Lee, Jong-Pal;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2801-2805
    • /
    • 2010
  • A nucleophilic substitution reaction of 4-chloro-7-nitrobenzofurazan (NBF-Cl) with anilines in MeOH-MeCN mixtures was conducted at 25, 35, and $45^{\circ}C$. Based on the higher $\beta_{nuc}$ values (1.0 - 1.6) of the reaction and a good correlation of the rate constants with the reduction potentials of the aniline nucleophiles, the present reaction was initiated by a single electron transfer (SET). After this step, the reaction proceeds through a transition state similar to the normal $S_NAr$-Ad.E pathway.

Menadione-Modified Anodes for Power Enhancement in Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal;Kim, Sunghyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3649-3653
    • /
    • 2013
  • As anode fabrication with different materials has been proven to be a successful alternative for enhancing power generation in the microbial fuel cells, a new approach to improved performance of MFCs with the use of menadione/carbon powder composite-modified carbon cloth anode has been explored in this study. Menadione has formal potential to easily accept electrons from the outer membrane cytochromes of electroactive bacteria that can directly interact with the solid surface. Surface bound menadione was able to maintain an electrical wiring with the trans-membrane electron transfer pathways to facilitate extracellular electron transfer to the electrode. In a single chamber air cathode MFC inoculated with aerobic sludge, maximum power density of $1250{\pm}35mWm^{-2}$ was achieved, which was 25% higher than that of an unmodified anode. The observed high power density and improved coulomb efficiency of 61% were ascribed to the efficient electron shuttling via the immobilized menadione.

Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14

  • Kim, Soo Jin;Kim, Ho Min
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.55-57
    • /
    • 2017
  • Toll-like receptor 4 (TLR4) together with MD2, one of the key pattern recognition receptors for a pathogen-associated molecular pattern, activates innate immunity by recognizing lipopolysaccharide (LPS) of Gram-negative bacteria. Although LBP and CD14 catalyze LPS transfer to the TLR4/MD2 complex, the detail mechanisms underlying this dynamic LPS transfer remain elusive. Using negative-stain electron microscopy, we visualized the dynamic intermediate complexes during LPS transfer-LBP/LPS micelles and ternary CD14/LBP/LPS micelle complexes. We also reconstituted the entire cascade of LPS transfer to TLR4/MD2 in a total internal reflection fluorescence (TIRF) microscope for a single molecule fluorescence analysis. These analyses reveal longitudinal LBP binding to the surface of LPS micelles and multi-round binding/unbinding of CD14 to single LBP/LPS micelles via key charged residues on LBP and CD14. Finally, we reveal that a single LPS molecule bound to CD14 is transferred to TLR4/MD2 in a TLR4-dependent manner. These discoveries, which clarify the molecular mechanism of dynamic LPS transfer to TLR4/MD2 via LBP and CD14, provide novel insights into the initiation of innate immune responses.

Photocyclization Reactions of ($\omega$-Phthalimidoalkoxy)acetic Acids via Sequential Single Electron Transfer-Decarboxylation Pathways

  • Yoon, Ung-Chan;Lee, Chan-Woo;Oh, Sun-Wha;Oh, Sun-Wha;Hyun Jin kim;Lee, Sang-Jin
    • Journal of Photoscience
    • /
    • v.7 no.4
    • /
    • pp.143-148
    • /
    • 2000
  • Studies have been conducted to explore single electron transfer(SET) promoted photocyclization of ($\omega$-phthalimidoalkoxy)acetic acids(alkoxy=ethoxy, n-propoxy and n-butyloxy). Photocyclizations occur in methanol or acetone in high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the carboxylic group. These photocyclizations are thought to proceed through pathways involving intramolecular SET from oxygen in the $\alpha$-carboxymethoxy groups to the singlet excited state phthalimide moieties followed by decarboxylation of the intermediate $\alpha$-carboxymethoxy cation fadicals and cyclizations by radical coupling. The photocyclizations occur ca. three times faster in both methanol or acetone with one equivalent of sodium hydroxide added to the reactions and occur slower in acetone than in methanol. The efficient and regiselective cyclization reactions observed for photolyses in methanol represent synthetically useful processes for construction of heterocyclic compounds.

  • PDF

Single-Crystal Silicon Thin-Film Transistor on Transparent Substrates

  • Wong, Man;Shi, Xuejie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1103-1107
    • /
    • 2005
  • Single-crystal silicon thin films on glass (SOG) and on fused-quartz (SOQ) were prepared using wafer bonding and hydrogen-induced layer transfer. Thinfilm transistors (TFTs) were subsequently fabricated. The high-temperature processed SOQ TFTs show better device performance than the low-temperature processed SOG TFTs. Tensile and compressive strain was measured respectively on SOQ and SOG. Consistent with the tensile strain, enhanced electron effective mobility was measured on the SOQ TFTs.

  • PDF

Cytochrome c Peroxidase: A Model Heme Protein

  • Erman, James E.;Vitello, Lidia B.
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.307-327
    • /
    • 1998
  • Cytochrome c peroxidase (CcP) is a yeast mitochondrial enzyme which catalyzes the reduction of hydrogen peroxide to water using two equivalents of ferrocytochrome c. The CcP/cytochrome c system has many features which make it a very useful model for detailed investigation of heme protein structure/function relationships including activation of hydrogen peroxide, protein-protein interactions, and long-range electron transfer. Both CcP and cytochrome c are single heme, single subunit proteins of modest size. High-resolution crystallographic structures of both proteins, of one-to-one complexes of the two proteins, and a number of active-site mutants are available. Site-directed mutagenesis studies indicate that the distal histidine in CcP is primarily responsible for rapid utilization of hydrogen peroxide implying significantly different properties of the distal histidine in the peroxidases compared to the globins. CcP and cytochrome c bind to form a dynamic one-to-one complex. The binding is largely electrostatic in nature with a small, unfavorable enthalpy of binding and a large positive entropy change upon complex formation. The cytochrome c-binding site on CcP has been mapped in solution by measuring the binding affinities between cytochrome c and a number of CcP surface mutations. The binding site for cytochrome c in solution is consistent with the crystallographic structure of the one-to-one complex. Evidence for the involvement of a second, low-affinity cytochrome c-binding site on CcP in long-range electron transfer between the two proteins is reviewed.

  • PDF