• 제목/요약/키워드: single dynamic model

검색결과 629건 처리시간 0.023초

Finite element model updating of an arch type steel laboratory bridge model using semi-rigid connection

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Kartal, Murat Emre;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.541-561
    • /
    • 2010
  • This paper presents finite element analyses, experimental measurements and finite element model updating of an arch type steel laboratory bridge model using semi-rigid connections. The laboratory bridge model is a single span and fixed base structure with a length of 6.1 m and width of 1.1m. The height of the bridge column is 0.85 m and the maximum arch height is 0.95 m. Firstly, a finite element model of the bridge is created in SAP2000 program and analytical dynamic characteristics such as natural frequencies and mode shapes are determined. Then, experimental measurements using ambient vibration tests are performed and dynamic characteristics (natural frequencies, mode shapes and damping ratios) are obtained. Ambient vibration tests are performed under natural excitations such as wind and small impact effects. The Enhanced Frequency Domain Decomposition method in the frequency domain and the Stochastic Subspace Identification method in the time domain are used to extract the dynamic characteristics. Then the finite element model of the bridge is updated using linear elastic rotational springs in the supports and structural element connections to minimize the differences between analytically and experimentally estimated dynamic characteristics. At the end of the study, maximum differences in the natural frequencies are reduced on average from 47% to 2.6%. It is seen that there is a good agreement between analytical and experimental results after finite element model updating. Also, connection percentages of the all structural elements to joints are determined depending on the rotational spring stiffness.

Model Multiplicity (UML) Versus Model Singularity in System Requirements and Design

  • Al-Fedaghi, Sabah
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.103-114
    • /
    • 2021
  • A conceptual model can be used to manage complexity in both the design and implementation phases of the system development life cycle. Such a model requires a firm grasp of the abstract principles on which a system is based, as well as an understanding of the high-level nature of the representation of entities and processes. In this context, models can have distinct architectural characteristics. This paper discusses model multiplicity (e.g., unified modeling language [UML]), model singularity (e.g., object-process methodology [OPM], thinging machine [TM]), and a heterogeneous model that involves multiplicity and singularity. The basic idea of model multiplicity is that it is not possible to present all views in a single representation, so a number of models are used, with each model representing a different view. The model singularity approach uses only a single unified model that assimilates its subsystems into one system. This paper is concerned with current approaches, especially in software engineering texts, where multimodal UML is introduced as the general-purpose modeling language (i.e., UML is modeling). In such a situation, we suggest raising the issue of multiplicity versus singularity in modeling. This would foster a basic appreciation of the UML advantages and difficulties that may be faced during modeling, especially in the educational setting. Furthermore, we advocate the claim that a multiplicity of views does not necessitate a multiplicity of models. The model singularity approach can represent multiple views (static, behavior) without resorting to a collection of multiple models with various notations. We present an example of such a model where the static representation is developed first. Then, the dynamic view and behavioral representations are built by incorporating a decomposition strategy interleaved with the notion of time.

Adaptive Reconstruction of Multi-periodic Harmonic Time Series with Only Negative Errors: Simulation Study

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.721-730
    • /
    • 2010
  • In satellite remote sensing, irregular temporal sampling is a common feature of geophysical and biological process on the earth's surface. Lee (2008) proposed a feed-back system using a harmonic model of single period to adaptively reconstruct observation image series contaminated by noises resulted from mechanical problems or environmental conditions. However, the simple sinusoidal model of single period may not be appropriate for temporal physical processes of land surface. A complex model of multiple periods would be more proper to represent inter-annual and inner-annual variations of surface parameters. This study extended to use a multi-periodic harmonic model, which is expressed as the sum of a series of sine waves, for the adaptive system. For the system assessment, simulation data were generated from a model of negative errors, based on the fact that the observation is mainly suppressed by bad weather. The experimental results of this simulation study show the potentiality of the proposed system for real-time monitoring on the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather.

장미형확산관 형태의 해양방류시스템의 혼합특성 연구 (A Study on Mixing Characteristics of Ocean Outfall System with Rosette Diffuser)

  • 김영도;서일원;권석재;류시완;권재현
    • 상하수도학회지
    • /
    • 제22권3호
    • /
    • pp.389-396
    • /
    • 2008
  • The hybrid model can be used to predict the initial near field mixing and the far field transport of the buoyant jets, which are discharged from the submerged wastewater ocean outfall. In the near field, the jet integral model can be used for single port diffusers while the ${\sigma}$ transformed particle tracking model was used in the far field. In this study, the experimental study was performed to verify the developed hybrid model in the previous research. The developed hybrid model properly predict the surface and vertical concentration distribution of the single buoyant jets with various effluent and ambient conditions. The hybrid model can also simulate the surface concentration distribution of the rosette diffuser except for the parallel diffuser with the higher densimetric Froude number due to the assumption that dynamic effects of the effluent plumes are negligible in the far field. The application of the hybrid model to rosette diffusers can predict the concentration near the diffuser more accurately when the line-plume approximation is used.

로보트 팔의 동력학적제어를 위한 신경제어구조 (Neurocontrol architecture for the dynamic control of a robot arm)

  • 문영주;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.280-285
    • /
    • 1991
  • Neural network control has many innovative potentials for fast, accurate and intelligent adaptive control. In this paper, a learning control architecture for the dynamic control of a robot manipulator is developed using inverse dynamic neurocontroller and linear neurocontroher. The inverse dynamic neurocontrouer consists of a MLP (multi-layer perceptron) and the linear neurocontroller consists of SLPs (single layer perceptron). Compared with the previous type of neurocontroller which is using an inverse dynamic neurocontroller and a fixed PD gain controller, proposed architecture shows the superior performance over the previous type of neurocontroller because linear neurocontroller can adapt its gain according to the applied task. This superior performance is tested and verified through the control of PUMA 560. Without any knowledge on the dynamic model, its parameters of a robot , (The robot is treated as a complete black box), the neurocontroller, through practice, gradually and implicitly learns the robot's dynamic properties which is essential for fast and accurate control.

  • PDF

경사지반에 설치된 단일말뚝과 무리말뚝의 동적 상호작용 (Dynamic Interaction of Single and Group Piles in Sloping Ground)

  • ;유병수;김성렬
    • 한국지반공학회논문집
    • /
    • 제36권1호
    • /
    • pp.5-15
    • /
    • 2020
  • 말뚝의 동적거동은 말뚝과 지반 사이의 동적 상호작용에 큰 영향을 받는다. 특히, 경사지반에 설치된 말뚝은 진동방향에 따른 지반저항력 차이, 지반 변위 등에 의해 말뚝-지반 동적상호작용이 매우 복잡해진다. 본 연구에서는 건조 사질토 경사지반에 설치된 단일말뚝과 2×2 무리말뚝에 대하여 동적 원심모형실험을 수행하였다. 그리고, 말뚝과 지반 변위 사이의 위상차 및 동적 p-y 곡선 등을 산정하여 경사지반, 단일말뚝과 무리말뚝, 입력가속도 진폭 등의 조건이 말뚝-지반 동적 상호작용에 미치는 영향을 분석하였다. 그 결과, 지반-말뚝 사이의 운동학적 힘이 말뚝의 동적거동에 큰 영향을 주며, 동적 p-y 곡선이 지반경사, 잔류변위, 운동학적 힘의 영향 등으로 매우 복잡한 형상을 보여주는 것으로 나타났다.

한국형 고속전철 시스템엔지니어링 관리체계의 거동분석에 관한 연구 (A Study on the Behavior Analysis of the High Speed Rail System)

  • 이태형;김대승;현승호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.35.1-40
    • /
    • 2001
  • This study is on the behavior analysis which can define and verify a system requirement through a behavior diagram for High speed rail system. The model considered in this study is limited to the preconditioning control of the control system specification for HSRS. To build an executable model, requirements should be decomposed first into leaf node requirements. The behavior model is composed of input, output, and functions which are linked with leaf node requirements. It is important that a single requirement must specify a single Auction. Using the developed executable model and the traceability between requirements and functions, this study found out a lot of static and dynamic inconsistency, missed and derived requirements. This is to develop and executable behavior model to do functional analysis and be able to verify the integrity of a specification.

  • PDF

Analytical modeling of masonry infills with openings

  • Kakaletsis, D.
    • Structural Engineering and Mechanics
    • /
    • 제31권4호
    • /
    • pp.423-437
    • /
    • 2009
  • In order to perform a step-by-step force-displacement response analysis or dynamic time-history analysis of large buildings with masonry infilled R/C frames, a continuous force-deformation model based on an equivalent strut approach is proposed for masonry infill panels containing openings. The model, which is applicable for degrading elements, can be implemented to replicate a wide range of monotonic force-displacement behaviour, resulting from different design and geometry, by varying the control parameters of the model. The control parameters of the proposed continuous model are determined using experimental data. The experimental program includes fifteen 1/3-scale, single-story, single-bay reinforced concrete frame specimens subjected to lateral cyclic loading. The parameters investigated include the shape, the size, the location of the opening and the infill compressive strength. The actual properties of the infill and henceforth the characteristics needed for the diagonal strut model are based on the assessment of its lateral resistance by the subtraction of the response of the bare frame from the response of the infilled frame.

Dynamic analysis of bridge girders submitted to an eccentric moving load

  • Vieira, Ricardo F.;Lisi, Diego;Virtuoso, Francisco B.
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.173-203
    • /
    • 2014
  • The cross-section warping due to the passage of high-speed trains can be a relevant issue to consider in the dynamic analysis of bridges due to (i) the usual layout of railway systems, resulting in eccentric moving loads; and (ii) the use of cross-sections prone to warping deformations. A thin-walled beam formulation for the dynamic analysis of bridges including the cross section warping is presented in this paper. Towards a numerical implementation of the beam formulation, a finite element with seven degrees of freedom is proposed. In order to easily consider the compatibility between elements, and since the coupling between flexural and torsional effects occurs in non-symmetric cross-sections due to dynamic effects, a single axis is considered for the element. The coupled flexural-torsional free vibration of thin-walled beams is analysed through the presented beam model, comparing the results with analytical solutions presented in the literature. The dynamic analysis due to an eccentric moving load, which results in a coupled flexural-torsional vibration, is considered in the literature by analytical solutions, being therefore of a limited applicability in practice engineering. In this paper, the dynamic response due to an eccentric moving load is obtained from the proposed finite element beam model that includes warping by a modal analysis.

Satisficing Trade-Off 방법을 이용한 유한요소 모델 개선 (Finite Element Model Updating Using Satisficing Trade-Off Method)

  • Kim, Gyeong-Ho;Park, Youn-sik
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.334.2-334
    • /
    • 2002
  • In conventional model updating using single-objective optimization techniques, imcompatible physical data are compared with each other using weighting factors. There are no general rules fur selecting the weighting factors since they are not directly related with the dynamic behavior of an updated model. So one of the most difficult tasks, in mr)del updating study, is 'balancing among the correlations', i.e. 'trade-off'. (omitted)

  • PDF