• Title/Summary/Keyword: single curvature trajectory

Search Result 2, Processing Time 0.013 seconds

A Capturing Algorithm of Moving Object using Single Curvature Trajectory (단일곡률궤적을 이용한 이동물체의 포획 알고리즘)

  • Choi Byoung-Suk;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.145-153
    • /
    • 2006
  • An optimal capturing trajectory for a moving object is proposed in this paper based on the observation that a single-curvature path is more accurate than double-or triple-curvature paths. Moving distance, moving time, and trajectory error are major factors considered in deciding an optimal path for capturing the moving object. That is, the moving time and distance are minimized while the trajectory error is maintained as small as possible. The three major factors are compared for the single and the double curvature trajectories to show superiority of the single curvature trajectory. Based upon the single curvature trajectory, a kinematics model of a mobile robot is proposed to follow and capture the moving object, in this paper. A capturing scenario can be summarized as follows: 1. Motion of the moving object has been captured by a CCD camera., 2. Position of the moving object has been estimated using the image frames, and 3. The mobile robot tries to follow the moving object along the single curvature trajectory which matches positions and orientations of the moving object and the mobile robot at the final moment. Effectiveness of the single curvature trajectory modeling and capturing algorithm has been proved, through simulations and real experiments using a 2-DOF wheel-based mobile robot.

Moving Object Following by a Mobile Robot using a Single Curvature Trajectory and Kalman Filters (단일곡률궤적과 칼만필터를 이용한 이동로봇의 동적물체 추종)

  • Lim, Hyun-Seop;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.599-604
    • /
    • 2013
  • Path planning of mobile robots has a purpose to design an optimal path from an initial position to a target point. Minimum driving time, minimum driving distance and minimum driving error might be considered in choosing the optimal path and are correlated to each other. In this paper, an efficient driving trajectory is planned in a real situation where a mobile robot follows a moving object. Position and distance of the moving object are obtained using a web camera, and the rotation angular and linear velocities are estimated using Kalman filters to predict the trajectory of the moving object. Finally, the mobile robot follows the moving object using a single curvature trajectory by estimating the trajectory of the moving object. Using the estimation by Kalman filters and the single curvature in the trajectory planning, the total tracking distance and time saved amounts to about 7%. The effectiveness of the proposed algorithm has been verified through real tracking experiments.