• 제목/요약/키워드: single coal

검색결과 83건 처리시간 0.024초

석탄보일러에서 각종 RDF혼소시 다이옥신 농도 조사 (Co-combustion of RPF in the Coal Power plant)

  • 최연석;최항석;김석준;윤균덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.452-455
    • /
    • 2008
  • The co-combustion of coal and three kinds of RDFs(Refuse Plastic Fuel) mixture has been experimented in a commercially operating CFB coal boiler respectively and the pollutant emissions such as SOx, NOx, TSP and dioxine were measured at the stack. The mixing ratio with coal was 7.5% RPF, 7.5% RDF and 10% SDF respectively. During co-combustion, dioxine emission level was very low and SOx, NOx and TSP were decreased comparing the single coal combustion. Emitting dioxine concentration was proportioned to the chlorine content of RDF. These RPF, SDF and RDF could be determined to be a good alternative fuel of general coal.

  • PDF

내부 온도분포를 고려한 Coal-Water Slurry의 점화현상에 관한 이론적 해석 (Theoretical Analysis of Ignition of a Coal-Water Slurry Droplets with Interior Temperature Distribution)

  • 최창은;백승욱;김종욱
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1823-1832
    • /
    • 1993
  • CWS(coal-water slurry) is used for application in power plants, boilers, industrial furnaces. A single coal-water slurry droplet ignition has been examined to reveal the basic nature of their evaporation, volatilization and heating processes. The interior droplet temperature distribution has been considered. The effect of coal thermal conductivity, droplet size, water fraction in the slurry, gas temperature and velocity and radiation on the ignition phenomena were also studied. Either increasing the velocity and gas temperature or decreasing the droplet size and water fraction in the slurry may reduce the time for evaporation and ignition delay time.

Permeability-increasing effects of hydraulic flushing based on flow-solid coupling

  • Zhang, Jiao;Wang, Xiaodong
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.285-300
    • /
    • 2017
  • Shallow coal resources are increasingly depleted, the mining has entered the deep stage. Due to "High stress, high gas, strong adsorption and low permeability" of coal seam, the gas drainage has become more difficult and the probability of coal and gas outburst accident increases. Based on the flow solid coupling theory of coal seam gas, the coupling model about stress and gas seepage of coal seam was set up by solid module and Darcy module in Comsol Multiphysics. The gas extraction effects were researched after applying hydraulic technology to increase permeability. The results showed that the effective influence radius increases with the expanded borehole radius and drainage time, decreases with initial gas pressure. The relationship between the effective influence radius and various factors presents in the form: $y=a+{\frac{b}{\left(1+{(\frac{x}{x_0})^p}\right)}}$. The effective influence radius with multiple boreholes is obviously larger than that of the single hole. According to the actual coal seam and gas geological conditions, appropriate layout way was selected to achieve the best effect. The field application results are consistent with the simulation results. It is found that the horizontal stress plays a very important role in coal seam drainage effect. The stress distribution change around the drilling hole will lead to the changes in porosity of coal seam, further resulting in permeability evolution and finally gas pressure distribution varies.

탈휘발화 과정에서 혼탄의 반응률과 열적 거동에 관한 연구 (Thermal Behavior and Kinetics of Coal Blends during Devolatilization)

  • 류광일;김량균;이동방;오택림;전충환
    • Korean Chemical Engineering Research
    • /
    • 제51권1호
    • /
    • pp.121-126
    • /
    • 2013
  • 본 연구 목적은 탈휘발화 과정에서의 역청탄과 아역청탄의 혼탄 열중량 곡선을 예측 하는 것이다. TSL (Thermal Shock Large) TGA를 통하여 실험을 수행 하였으며, 반응속도상수 분석은 Coats-redfern 방법을 이용하였다. 도출된 반응속도상수를 기반으로 단일탄의 Sum Method에 대한 일차적 검증을 하였으며, 혼탄시의 TG curve를 WSM(Weight Sum Method)와 저자가 제시한 MWSM (Modified Weight Sum Method)를 사용하여 예측 및 비교하였다. WSM 및 MWSM를 통한 예측결과와 TG curve 실험결과의 정량적인 비교를 위해 Linear least square method를 사용하였다. TG curve 상에서 서로 다른 기울기를 가지는 경우와 많은 휘발분의 방출로 인한 급격한 질량감소가 나타나는 구간의 경우 MWSM이 WSM 보다 실험결과에 더 정확한 결과를 예측함을 확인하였다. 탈휘발 과정에서의 혼탄의 열적 거동은 단일탄의 특성에서부터 예측할 수 있음을 확인할 수 있었다.

매립석탄회 고배합 콘크리트 배합설계 기법 (Concrete Mixture Design Method with Large Amount of Land Reclamation Ash)

  • 한상묵;송영철;하재담
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.344-347
    • /
    • 2004
  • The amount of coal ash has been increasing and development of effective use is urgently needed. Various by-products and waste are expected to be used as resources from the point of reduction in environmental load. This is an experimental study to compare the properties of high volume coal ash concrete using the reclaimed coal ash. For this purpose, authors have started work to develop a production method of hardening coal ash concrete. Laboratory tests show that the optimum mixture of coal ash concrete can be determined from multiple regression analysis. According to test results, it was found that the compressive strength of the concrete can be determined by a single curve. And it is obtained from the analysis of the results tested for concrete with the ratio of total power to water and amount of land reclamation ash.

  • PDF

희체가스 가중합산모델을 적용한 미분탄 연소의 해석 (Modeling of a Pulverized Coal Combustion With Applying WSGGM)

  • 유명종;백승욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.155-163
    • /
    • 1999
  • A numerical study for simulating a swirling pulverized coal combustion in axisymmetric geometry is done here by applying the weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard ${\kappa}-{\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase for soot. The eddydissipation model is employed for the reaction rate for gaseous mixture, and the single-step first-order reaction model for the devolatilization process for coal. By comparing the numerical results with experimental ones, the models used here are confirmed and found to be one of good alternatives for simulating the combustion as well as radiative characteristics.

  • PDF

Coal Fly Ash로 합성한 제올라이트에 의한 Sr(II)과 Cs(I) 이온의 제거 특성 (Adsorption Characteristics of Sr(II) and Cs(I) ions by Zeolite Synthesized from Coal Fly Ash)

  • 이창한;박정민;이민규
    • 한국환경과학회지
    • /
    • 제23권12호
    • /
    • pp.1987-1998
    • /
    • 2014
  • Zeolite was synthesized from power station waste, coal fly ash, as an alternative low-cost adsorbent and investigated for the removal of Sr(II) and Cs(I) ions from single- and binary metal aqueous solutions. In order to investigate the adsorption characteristics, the effects of various operating parameters such as initial concentration of metal ions, contact time, and pH of the solutions were studied in a batch adsorption technique. The Langmuir model better fitted the adsorption isotherm data than the Freundlich model. The pseudo second-order model was found more applicable to describe the kinetics of system. The adsorption capacities of Sr(II) and Cs(I) ions obtained from the Langmuir model were 1.7848 mmol/g and 0.7640 mmol/g, respectively. Although the adsorption capacities of individual Sr(II) and Cs(I) ions was less in the binary-system, the sum of the total adsorption capacity (2.3572 mmol/g) of both ions in the binary-system was higher than the adsorption capacity of individual ion in the single-system. Comparing the homogeneous film diffusion model with the homogeneous particle diffusion model, the adsorption was mainly controlled by the particle diffusion process.

Failure characteristics of combined coal-rock with different interfacial angles

  • Zhao, Tong-Bin;Guo, Wei-Yao;Lu, Cai-Ping;Zhao, Guang-Ming
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.345-359
    • /
    • 2016
  • In order to investigate the influence of the interfacial angel on failure characteristics and mechanism of combined coal-rock mass, 35 uniaxial/biaxial compressive simulation tests with 5 different interfacial angels of combined coal-rock samples were conducted by PFC2D software. The following conclusions are drawn: (1) The compressive strength and cohesion decrease with the increase of interfacial angle, which is defined as the angle between structure plane and the exterior normal of maximum principal plane, while the changes of elastic modulus and internal friction angle are not obvious; (2) The impact energy index $K_E$ decreases with the increase of interfacial angle, and the slip failure of the interface can be predicted based on whether the number of acoustic emission (AE) hits has multiple peaks or not; (3) There are four typical failure patterns for combined coal-rock samples including I (V-shaped shear failure of coal), II (single-fracture shear failure of coal), III (shear failure of rock and coal), and IV (slip rupture of interface); and (4) A positive correlation between interfacial angle and interface effect is shown obviously, and the interfacial angle can be divided into weak-influencing scope ($0-15^{\circ}$), moderate-influencing scope ($15-45^{\circ}$), and strong-influencing scope (> $45^{\circ}$), respectively. However, the confining pressure has a certain constraint effect on the interface effect.

상용 미분탄 보일러 연소해석에서 석탄 탈휘발 모델 및 난류반응속도의 영향 평가 (Effects of coal devolatilization model and turbulent reaction rate in numerical simulations of a large-scale pulverized-coal-fired boiler)

  • 양주향;김정은;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.59-62
    • /
    • 2014
  • Predicting coal combustion by computational fluid dynamics (CFD) requires a combination of complicated flow and reaction models for turbulence, radiation, particle flows, heterogeneous combustion, and gaseous reactions. There are various levels of models available for each of the phenomena, but the use of advanced models are significantly restricted in a large-scale boiler due to the computational costs and the balance of accuracy between adopted models. In this study, the influence of coal devolatilization model and turbulent mixing rate was assessed in CFD for a commercial boiler at 500 MWe capacity. For coal devolatilization, two models were compared: i) a simple model assuming single volatile compound based on proximate analysis and ii) advanced model of FLASHCHAIN with multiple volatile species. It was found out that the influence of the model was observed near the flames but the overall gas temperature and heat transfer rate to the boiler were very similar. The devolatilization rate was found not significant since the difference in near-flame temperature became noticeable when it was multiplied by 10 or 0.1. In contrast, the influence of turbulent mixing rate (constant A in the Magnussen model) was found very large. Considering the heat transfer rate and flame temperature, a value of 1.0 was recommended for the rate constant.

  • PDF

Influence of explosives distribution on coal fragmentation in top-coal caving mining

  • Liu, Fei;Silva, Jhon;Yang, Shengli;Lv, Huayong;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • 제18권2호
    • /
    • pp.111-119
    • /
    • 2019
  • Due to certain geological characteristics (high thickness, rocky properties), some underground coal mines require the use of explosives. This paper explores the effects of fragmentation of different decks detonated simultaneously in a single borehole with the use of numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include an erosion criterion to simulate the cracks generated by the explosion. As expected, the near-borehole area was damaged by compression stresses, while far zones and the free surface of the boundary were subjected to tensile damage. With the increase of the number of decks in the borehole, different changes in the fracture pattern were observed, and the superposition effects of the stress wave became evident, affecting the fragmentation results. The superposition effect is more evident in close distances to the borehole, and its effect attenuates when the distance to the borehole increase.