• Title/Summary/Keyword: single cell detritus (SCD)

Search Result 7, Processing Time 0.032 seconds

Isolation of Marine Bacterium Decomposing Sea tangle (Laminaria japonica) to Single Cell Detritus (다시마(Laminaria japonica)를 single cell detritus로 분해하는 해양세균의 분리)

  • Yi, Kun-Wook;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.237-240
    • /
    • 2006
  • Seventy-one marine bacteria decomposing sea tangle (Laminaria japonica) into single cell detritus (SCD) were isolated from sea water, sea tangle, sea mustard (Undaria pinnatifida), sea urchin (Anthocidaris crassispina), star fish (Acanthaster planci), and turban cell (Batillus cornutus), among which 14 strains decreased cutting strength of sea tangle and had alginate-degrading activity. Marine bacterium No. 34 isolated from turban cell showed lowest cutting strength of sea tangle, strongest alginate-degrading activity, and produced high content of $5-10\;{\mu}m$ SCD from sea tangle. This strain was identified as Vibrio sp. based on morphological, physiological, and biochemical characteristics and named as Vibrio sp. YKW-34.

Quality Characteristics of Sea Tangle Single Cell Detritus (SCD) Manufactured by Vibrio sp. Isolated from Batillus cornutus (소라에서 분리한 Vibrio균으로 제조한 다시마 Single Cell Detritus(SCD)의 품질특성)

  • Bang, Sang-Jin;Shin, Il-Shik;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.606-612
    • /
    • 2006
  • Obtaining powder form of seaweed is essential for the use of seaweed as a food additive. The deterioration of seaweed caused by high temperatures during homogenization and powder processing is a serious problem and limits the use of seaweed as a food or pharmaceutical ingredient. Furthermore, many powder particles are not fluidized very well because of the interaction between particles. In order to solve this problem, sea tangle was hydrolyzed to a level of single cell detritus (SCD) by Vibrio sp., isolated from Batillus cornutus. with strong hydrolytic activity. The crude protein and amino acid contents of sea tangle SCD were higher than those of the powder, whereas the reverse was true for ash content. Sea tangle powder contained more mineral than its SCD, whereas total amino acid content was 5 times more in SCD than in power. The anticancer activities of sea tangle SCD and powder were 31.20 and 29.07%, respectively, with no significant difference (p<0.05), but about 15% higher than that of the control. The ACE inhibitory activity of the sea tangle powder, 39.31%, was higher than the 26.07% of the SCD. The antithrombin activity of the sea tangle powder, 55.3 seconds, was higher than the 34.5 seconds of the SCD. Moreover, there was no antioxidative and ischemic activities in both tile sea tangle powder and SCD.

Development of Functional Bread with Sea Tangle Single Cell Detritus (SCD) (다시마 Single Cell Detritus(SCD)를 첨가한 기능성 빵의 개발)

  • Bang, Sang-Jin;Choi, Seung-Hwa;Shin, Il-Shik;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.10
    • /
    • pp.1430-1437
    • /
    • 2009
  • Functional bread was manufactured with single cell detritus (SCD) of sea tangle. The optimum ingredient formula for SCD bread was determined based on mixture model. Flour and water reduced max weight, strength, hardness and specific loaf volume, whereas the increased SCD reversed the volume change of dough. Flour increased $L^*$ and $b^*$ values of SCD bread, while SCD decreased. Flour and water decreased $a^*$ value, while SCD increased. Max weight, strength, hardness, specific loaf volume, $b^*$ value and water holding capacity (WHC) were linear model on ANOVA table, whereas distance, volume change of dough, $L^*$ and $a^*$ values were nonlinear model. The response constraint coefficient showed that SCD influenced texture of SCD bread more than flour and water did, whereas water influenced the volume change of dough, specific loaf volume and WHC more than flour and SCD did. Moreover, flour influenced color value more than did water and SCD. Distance and $a^*$ value fitted nonlinear model with interaction terms for flour-SCD and water-SCD. Optimum ingredient formula for SCD bread was: flour, 48.25%; water, 30.89%; SCD, 3.86%. Sensory evaluation of SCD bread was a little lower than industrial bread and electrolyzed SCD bread.

Optimum Process Condition of Noodles with Sea Tangle Single Cell Detritus (SCD) (다시마 Single Cell Detritus(SCD)를 첨가한 국수의 최적화 가공조건)

  • Bang, Sang-Jin;Shin, Il-Shik;Kim, Sang-Moo
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.68-74
    • /
    • 2006
  • To utilize sea tangle single cell detritus (SCD) as food additive, SCD noodle was developed using mixture model. Flour improved, whereas water decreased texture of SCD noodles. Texture of SCD noodle decreased initially and then increased as SCD content increased. Flour and SCD increased, whereas water decreased $L^*$ and $b^*$ values of dried and cooked noodles. Flour decreased $a^*$ values of dried and cooked noodles, while SCD increased $a^*$ value of cooked noodle. Response constraint coefficient showed SCD influence on texture, and $L^*$ and $b^*$ values of dried and cooked noodles was higher than those of flour and water, whereas water influence on $a^*$ value was higher than those of flour and SCD. Texture and color values fitted nonlinear model with interaction terms for flour-water, flour-SCD, and water-SCD. Optimum mixing ratio value of flour : water : SCD was 63.3 : 31.0 : 3.7%. Sensory evaluation value of SCD noodles was lower than those of industrial and electrolyzed SCD noodles.

Quality Characteristics of Surimi-Based Product with Sea Tangle Single Cell Detritus (SCD) (다시마 Single Cell Detritus(SCD)를 첨가하여 제조한 수산연제품의 품질특성)

  • Bang, Sang-Jin;Shin, Il-Shik;Chung, Dong-Hwa;Kim, Sang-Moo
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.337-341
    • /
    • 2006
  • The quality characteristics of a surimi-based product with sea tangle single cell detritus (SCD) were studied in order to utilize SCD from sea tangle as a food additive. Mixture design and regression models were applied to optimize the processing conditions and to investigate the interaction between surimi and the other ingredients. Surimi and SCD decreased hardness and cohesiveness of surimi gels, and then increased them. Water increased hardness and then decreased it, whereas cohesiveness was reversed. Surimi and water increased gumminess and brittleness of surimi gels, but SCD decreased them. SCD increased water retention ability (WRA) and whiteness of surimi gels, whereas water decreased it. Hardness and cohesiveness fitted nonlinear models by ANOVA, but gumminess, brittleness, WRA and whiteness fitted linear models. The response constraint coefficient showed that surimi influenced hardness and whitenessmore than water and SCD, whereas water influenced WRA more than surimi and SCD. Moreover, SCD influenced cohesiveness, gumminess and brittleness more than surimi and water. Hardness and cohesiveness fitted nonlinear models with interaction terms for surimi-SCD and surimi-water, respectively. Optimum mixed ratio values of surimi, water, and SCD were 36.80, 57.07 and 4.14%, respectively, by mixture model.