• Title/Summary/Keyword: simultaneous wireless information and power transmission

Search Result 17, Processing Time 0.029 seconds

Simultaneous Information and Power Transfer for Multi-antenna Primary-Secondary Cooperation in Cognitive Radio Networks

  • Liu, Zhi Hui;Xu, Wen Jun;Li, Sheng Yu;Long, Cheng Zhi;Lin, Jia Ru
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.941-951
    • /
    • 2016
  • In this paper, cognitive radio and simultaneous wireless information and power transfer (SWIPT) are effectively combined to design a spectrum-efficient and energy-efficient transmission paradigm. Specifically, a novel SWIPT-based primary-secondary cooperation model is proposed to increase the transmission rate of energy/spectrum constrained users. In the proposed model, a multi-antenna secondary user conducts simultaneous energy harvesting and information forwarding by means of power splitting (PS), and tries to maximize its own transmission rate under the premise of successfully assisting the data delivery of the primary user. After the problem formulation, joint power splitting and beamforming optimization algorithms for decode-and-forward and amplify-and-forward modes are presented, in which we obtain the optimal PS factor and beamforming vectors using a golden search method and dual methods. Simulation results show that the proposed SWIPTbased primary-secondary cooperation schemes can obtain a much higher level of performance than that of non-SWIPT cooperation and non-cooperation schemes.

Robust Transceiver Designs in Multiuser MISO Broadcasting with Simultaneous Wireless Information and Power Transmission

  • Zhu, Zhengyu;Wang, Zhongyong;Lee, Kyoung-Jae;Chu, Zheng;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.173-181
    • /
    • 2016
  • In this paper, we address a new robust optimization problem in a multiuser multiple-input single-output broadcasting system with simultaneous wireless information and power transmission, where a multi-antenna base station (BS) sends energy and information simultaneously to multiple users equipped with a single antenna. Assuming that perfect channel-state information (CSI) for all channels is not available at the BS, the uncertainty of the CSI is modeled by an Euclidean ball-shaped uncertainty set. To optimally design transmit beamforming weights and receive power splitting, an average total transmit power minimization problem is investigated subject to the individual harvested power constraint and the received signal-to-interference-plus-noise ratio constraint at each user. Due to the channel uncertainty, the original problem becomes a homogeneous quadratically constrained quadratic problem, which is NP-hard. The original design problem is reformulated to a relaxed semidefinite program, and then two different approaches based on convex programming are proposed, which can be solved efficiently by the interior point algorithm. Numerical results are provided to validate the robustness of the proposed algorithms.

System-Level Analysis of Receiver Diversity in SWIPT-Enabled Cellular Networks

  • Lam, Thanh Tu;Renzo, Marco Di;Coon, Justin P.
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.926-937
    • /
    • 2016
  • In this paper, we study the feasibility of receiver diversity for application to downlink cellular networks, where low-energy devices are equipped with information decoding and energy harvesting receivers for simultaneous wireless information and power transfer. We compare several options that are based on selection combining and maximum ratio combining, which provide different implementation complexities. By capitalizing on the Frechet inequality, we shed light on the advantages and limitations of each scheme as a function of the transmission rate and harvested power that need to be fulfilled at the low-energy devices. Our analysis shows that no scheme outperforms the others for every system setup. It suggests, on the other hand, that the low-energy devices need to operate in an adaptive fashion, by choosing the receiver diversity scheme as a function of the imposed requirements. With the aid of stochastic geometry, we introduce mathematical frameworks for system-level analysis. We show that they constitute an important tool for system-level optimization and, in particular, for identifying the diversity scheme that optimizes wireless information and power transmission as a function of a sensible set of parameters. Monte Carlo simulations are used to validate our findings and to illustrate the trade-off that emerge in cellular networks with simultaneous wireless information and power transfer.

Simultaneous Transmission of Optical Wireless Power Transfer and Optical Wireless Communication using a Laser Diode (레이저 기반의 광 무선충전 및 광 무선통신의 동시전송)

  • Shin, Jae-Woo;Yun, Tae-Uk;Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.605-610
    • /
    • 2021
  • Wireless charging method using a laser is considered as the most efficient method at a long distance of the wireless charging method. Combining long-range laser wireless charging technology with wireless communication technology will make it possible to use it for a variety of applications. Accordingly, this paper shows the results of research and experiments on wireless charging and wireless communication simultaneously based on a laser. This technique uses a laser as a light source for E/O(: Electric-to-Optical) conversion at the transmitter for optical wireless power transmission. In the experimental results, the optical power transmission using a 100 mW laser transmitter and a solar cells receiver showed a DC-to-DC efficiency of 1.9 %, wireless optical communication showed a transmission speed of up to 90 kbps when the transmission distance is 15 m.

Resource allocation in downlink SWIPT-based cooperative NOMA systems

  • Wang, Longqi;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.20-39
    • /
    • 2020
  • This paper considers a downlink multi-carrier cooperative non-orthogonal multiple access (NOMA) transmission, where no direct link exists between the far user and the base station (BS), and the communication between them only relies on the assist of the near user. Firstly, the BS sends a superimposed signal of the far and the near user to the near user, and then the near user adopts simultaneous wireless information and power transfer (SWIPT) to split the received superimposed signal into two portions for energy harvesting and information decoding respectively. Afterwards, the near user forwards the signal of the far user by utilizing the harvested energy. A minimum data is required to ensure the quality of service (QoS) of the far user. We jointly optimize power allocation, subcarrier allocation, time allocation, the power allocation (PA) coefficient and the power splitting (PS) ratio to maximize the number of data bits received at the near user under the energy causality constraint, the minimum data constraint and the transmission power constraint. The block-coordinate descent method and the Lagrange duality method are used to obtain a suboptimal solution of this optimization problem. In the final simulation results, the superiority of the proposed NOMA scheme is confirmed compared with the benchmark NOMA schemes and the orthogonal multiple access (OMA) scheme.

Underwater Simultaneous Light Information and Power Transmission using a Laser Diode (레이저 다이오드를 이용한 수중 광 정보 및 전력 동시전송)

  • Kim, Sung-Man;Shin, Jae-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.853-858
    • /
    • 2022
  • In this paper, we show a simultaneous transmission of underwater optical wireless power transfer and underwater optical wireless communication. A laser diode is used for electric-to-optic conversion at the transmitter and a solar cell is used for optic-to-electric conversion at the receiver. We optimized the transmitter and receiver for the best performance. The laser diode is a 100-mW laser diode and showed a conversion efficiency of 18.5%. The experimental results showed a 0.33-% DC-to-DC underwater power transfer efficiency at 5 m and a data rate of 100 kbps at 1 m.

Real-time implementation of distributed beamforming for simultaneous wireless information and power transfer in interference channels

  • Hong, Yong-Gi;Hwang, SeongJun;Seo, Jiho;Lee, Jonghyeok;Park, Jaehyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.389-399
    • /
    • 2021
  • In this paper, we propose one-bit feedback-based distributed beamforming (DBF) techniques for simultaneous wireless information and power transfer in interference channels where the information transfer and power transfer networks coexist in the same frequency spectrum band. In a power transfer network, multiple distributed energy transmission nodes transmit their energy signals to a single energy receiving node capable of harvesting wireless radio frequency energy. Here, by considering the Internet-of-Things sensor network, the energy harvesting/information decoding receivers (ERx/IRx) can report their status (which may include the received signal strength, interference, and channel state information) through one-bit feedback channels. To maximize the amount of energy transferred to the ERx and simultaneously minimize the interference to the IRx, we developed a DBF technique based on one-bit feedback from the ERx/IRx without sharing the information among distributed transmit nodes. Finally, the proposed DBF algorithm in the interference channel is verified through the simulations and also implemented in real time by using GNU radio and universal software radio peripheral.

Joint Beamforming and Power Splitting Design for Physical Layer Security in Cognitive SWIPT Decode-and-Forward Relay Networks

  • Xu, Xiaorong;Hu, Andi;Yao, Yingbiao;Feng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • In an underlay cognitive simultaneous wireless information and power transfer (SWIPT) network, communication from secondary user (SU) to secondary destination (SD) is accomplished with decode-and-forward (DF) relays. Multiple energy-constrained relays are assumed to harvest energy from SU via power splitting (PS) protocol and complete SU secure information transmission with beamforming. Hence, physical layer security (PLS) is investigated in cognitive SWIPT network. In order to interfere with eavesdropper and improve relay's energy efficiency, a destination-assisted jamming scheme is proposed. Namely, SD transmits artificial noise (AN) to interfere with eavesdropping, while jamming signal can also provide harvested energy to relays. Beamforming vector and power splitting ratio are jointly optimized with the objective of SU secrecy capacity maximization. We solve this non-convex optimization problem via a general two-stage procedure. Firstly, we obtain the optimal beamforming vector through semi-definite relaxation (SDR) method with a fixed power splitting ratio. Secondly, the best power splitting ratio can be obtained by one-dimensional search. We provide simulation results to verify the proposed solution. Simulation results show that the scheme achieves the maximum SD secrecy rate with appropriate selection of power splitting ratio, and the proposed scheme guarantees security in cognitive SWIPT networks.

Simultaneous Wireless Information and Power Transfer in Two-hop OFDM Decode-and-Forward Relay Networks

  • Di, Xiaofei;Xiong, Ke;Zhang, Yu;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.152-167
    • /
    • 2016
  • This paper investigates the simultaneous wireless information and power transfer (SWIPT) for two-hop orthogonal frequency division multiplexing (OFDM) decode-and-forward (DF) relay network, where a relay harvests energy from radio frequency signals transmitted by a source and then uses the harvested energy to assist information transmission from the source to its destination. The power splitting receiver is considered at the relay. To explore the performance limit of such a SWIPT-enabled system, a resource allocation (RA) optimization problem is formulated to maximize the achievable information rate of the system, where the power allocation, the subcarrier pairing and the power splitting factor are jointly optimized. As the problem is non-convex and there is no known solution method, we first decompose it into two separate subproblems and then design an efficient RA algorithm. Simulation results demonstrate that our proposed algorithm can achieve the maximum achievable rate of the system and also show that to achieve a better system performance, the relay node should be deployed near the source in the SWIPT-enabled two-hop OFDM DF relay system, which is very different from that in conventional non-SWIPT system where the relay should be deployed at the midpoint of the line between the source and the destination.

Joint Uplink and Downlink Resource Allocation in Data and Energy Integrated Communication Networks

  • Yu, Qin;Lv, Kesi;Hu, Jie;Yang, Kun;Hong, Xuemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3012-3028
    • /
    • 2017
  • In this paper, we propose a joint power control strategy for both the uplink and downlink transmission by considering the energy requirements of the user equipments' uplink data transmissions in data and energy integrated communication networks (DEINs). In DEINs, the base station (BS) adopts the power splitting (PS) aided simultaneous wireless information and power transfer (SWIPT) technique in the downlink (DL) transmissions, while the user equipments (UEs) carry out their own uplink (UL) transmissions by exploiting the energy harvested during the BS's DL transmissions. In our DEIN model, there are M UEs served by the BS in order to fulfil both of their DL and UL transmissions. The orthogonal frequency division multiple access (OFDMA) technique is adopted for supporting the simultaneous transmissions of multiple UEs. Furthermore, a transmission frame is divided into N time slots in the medium access control (MAC) layer. The mathematical model is established for maximizing the sum-throughput of the UEs' DL transmissions and for ensuring their fairness during a single transmission frame T, respectively. In order to achieve these goals, in each transmission frame T, we optimally allocate the BS's power for each subcarrier and the PS factor for each UE during a specific time slot. The original optimisation problems are transformed into convex forms, which can be perfectly solved by convex optimisation theories. Our numerical results compare the optimal results by conceiving the objective of maximising the sum-throughput and those by conceiving the objective of maximising the fair-throughput. Furthermore, our numerical results also reveal the inherent tradeoff between the DL and the UL transmissions.